Atjaunināt sīkdatņu piekrišanu

Chinese Computational Linguistics: 21st China National Conference, CCL 2022, Nanchang, China, October 1416, 2022, Proceedings 1st ed. 2022 [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 351 pages, height x width: 235x155 mm, weight: 569 g, 76 Illustrations, color; 7 Illustrations, black and white; XVII, 351 p. 83 illus., 76 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Artificial Intelligence 13603
  • Izdošanas datums: 04-Oct-2022
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031183142
  • ISBN-13: 9783031183140
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 351 pages, height x width: 235x155 mm, weight: 569 g, 76 Illustrations, color; 7 Illustrations, black and white; XVII, 351 p. 83 illus., 76 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Artificial Intelligence 13603
  • Izdošanas datums: 04-Oct-2022
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031183142
  • ISBN-13: 9783031183140
This book constitutes the proceedings of the 21st China National Conference on Computational Linguistics, CCL 2022, held in Nanchang, China, in October 2022.

The 22 full English-language papers in this volume were carefully reviewed and selected from 293 Chinese and English submissions.

The conference papers are categorized into the following topical sub-headings: Linguistics and Cognitive Science; Fundamental Theory and Methods of Computational Linguistics; Information Retrieval, Dialogue and Question Answering; Text Generation and Summarization; Knowledge Graph and Information Extraction; Machine Translation and Multilingual Information Processing; Minority Language Information Processing; Language Resource and Evaluation; NLP Applications.

Linguistics and Cognitive Science.- Discourse Markers as the
Classificatory Factors of Speech Acts.- Fundamental Theory and Methods of
Computational Linguistics.- DIFM: An effective deep interaction and fusion
model for sentence matching.- ConIsI: A Contrastive Framework with
Inter-sentence Interaction for Self-supervised Sentence
Representation.- Information Retrieval, Dialogue and Question
Answering.- Data Synthesis and Iterative Refinement for Neural Semantic
Parsing without Annotated Logical Forms.- EventBERT: Incorporating
Event-based Semantics for Natural Language Understanding.- An Exploration of
Prompt-Based Zero-Shot Relation Extraction Method.- Abstains from Prediction:
Towards Robust Relation Extraction in Real World.- Using Extracted Emotion
Cause to Improve Content-Relevance for Empathetic Conversation
Generation.- Text Generation and Summarization.- To Adapt or to Fine-tune: A
Case Study on Abstractive Summarization.- Knowledge Graph and Information
Extraction.- MRC-based Medical NER with Multi-task Learning and
Multi-strategies.- A Multi-Gate Encoder for Joint Entity and Relation
Extraction.- Improving Event Temporal Relation Classification via Auxiliary
Label-Aware Contrastive Learning.- Machine Translation and Multilingual
Information Processing.- Towards Making the Most of Pre-trained Translation
Model for Quality Estimation.- Supervised Contrastive Learning for
Cross-lingual Transfer Learning.- Minority Language Information
Processing.- Interactive Mongolian Question Answer Matching Model Based on
Attention Mechanism in the Law Domain.- Language Resource and
Evaluation.- TCM-SD: A Benchmark for Probing Syndrome Differentiation via
Natural Language Processing.- COMPILING: A Benchmark Dataset for Chinese
Complexity Controllable Definition Generation.- NLP Applications.- Can We
Really Trust Explanations? Evaluating the Stability of Feature Attribution
Explanation Methods via Adversarial Attack.- Dynamic Negative Example
Construction for Grammatical Error Correction using Contrastive
Learning.- SPACL: Shared-Private Architecture based on Contrastive Learning
for Multi-domain Text Classification.- Low-Resource Named Entity Recognition
Based on Multi-hop Dependency Trigger.- Fundamental Analysis based Neural
Network for Stock Movement Prediction.