Atjaunināt sīkdatņu piekrišanu

E-grāmata: Chlorinated Solvent Source Zone Remediation

Edited by , Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The purpose of this book is to help engineers and scientists better understand dense nonaqueous phase liquid (DNAPL) contamination of groundwater and the methods and technology used for characterization and remediation. Remediation of DNAPL source zones is very difficult and controversial and must be based on state-of-the-art knowledge of the behavior (transport and fate) of nonaqueous phase liquids in the subsurface and site specific geology, chemistry and hydrology. This volume is focused on the characterization and remediation of nonaqueous phase chlorinated solvents and it is hoped that mid-level engineers and scientists will find this book helpful in understanding the current state-of-practice of DNAPL source zone management and remediation.

This book examines dense nonaqueous phase liquid (DNAPL) groundwater contamination and the methods used for characterization and remediation. The book offers state-of-the-art knowledge and techniques for remediation of nonaqueous phase chlorinated solvents.
Chapter 1 Source Zone Remediation: The State Of The Practice
1(28)
1.1 Introduction
1(2)
1.2 Chlorinated Solvent Source Zones
3(8)
1.2.1 Evolution of Understanding
3(2)
1.2.2 Life Cycle of a Chlorinated Solvent Source Zone
5(6)
1.3 Historical Remediation Trends
11(3)
1.3.1 Source Containment
14(1)
1.4 State of the Practice
14(10)
1.4.1 The Source Zone Remediation Challenge (Chapter 2)
14(1)
1.4.2 DNAPL Source Zone Characterization and Delineation (Chapter 3)
15(1)
1.4.3 Advanced Diagnostic Tools (Chapter 4)
16(1)
1.4.4 Modeling Source Zone Remediation (Chapter 5)
16(1)
1.4.5 Modeling Plume Response to Source Treatment (Chapter 6)
17(1)
1.4.6 Flux-Based Site Assessment and Management (Chapter 7)
17(1)
1.4.7 Hydraulic Displacement of Dense Nonaqueous Phase Liquids (Chapter 8)
18(1)
1.4.8 In Situ Chemical Oxidation (Chapter 9)
18(1)
1.4.9 In Situ Chemical Reduction for Source Remediation (Chapter 10)
19(1)
1.4.10 Surfactant and Cosolvent Hushing (Chapter 11)
19(1)
1.4.11 In Situ Bioremediation of Chlorinated Ethene Source Zones (Chapter 12)
20(1)
1.4.12 Natural Attenuation of Chlorinated Solvent Source Zones (Chapter 13)
21(1)
1.4.13 In Situ Thermal Treatment of Chlorinated Solvent Source Zones (Chapter 14)
21(1)
1.4.14 Combined Remedies (Chapter 15)
22(1)
1.4.15 Cost Analyses for Remedial Options (Chapter 16)
23(1)
1.4.16 Groundwater Remediation, Management, and the Use of Alternative Endpoints at Highly Complex Sites (Chapter 17)
23(1)
1.4.17 Future Directions and Research Needs for Source Zone Remediation (Chapter 18)
23(1)
1.5 Summary
24(5)
References
25(4)
Chapter 2 The Source Zone Remediation Challenge
29(34)
2.1 Introduction
29(2)
2.2 Source Management Options
31(3)
2.3 Performance Prediction Limitations
34(1)
2.4 Source Characterization and Monitoring
35(6)
2.4.1 Overview of a DNAPL Site
35(2)
2.4.2 Life Cycle of a DNAPL Site Investigation and Remedy
37(1)
2.4.3 Characterization and Monitoring Challenges
37(2)
2.4.4 Conventional Methods
39(1)
2.4.5 Innovative Methods
39(2)
2.5 Remediation Technologies
41(2)
2.5.1 Hydraulic Displacement
41(1)
2.5.2 In Situ Chemical Oxidation
41(1)
2.5.3 In Situ Chemical Reduction
41(1)
2.5.4 Surfactant and Cosolvent Flushing
42(1)
2.5.5 In Situ Bioremediation
42(1)
2.5.6 Natural Attenuation of Sources
42(1)
2.5.7 In Situ Thermal Treatment
43(1)
2.6 Source Remediation Issues
43(5)
2.6.1 DNAPL Remediation Effectiveness
43(2)
2.6.2 Technology Applicability
45(1)
2.6.3 Contaminant Distribution
46(2)
2.7 Benefits of Source Depletion
48(5)
2.7.1 Source Depletion and Mass Discharge
49(3)
2.7.2 Source Depletion and Plume Behavior
52(1)
2.8 Risks of Implementing Source Depletion Technologies
53(1)
2.9 Estimating Impacts of Source Depletion on Life Cycle Costs
54(1)
2.10 Summary and Future Needs
55(8)
References
56(7)
Chapter 3 Dnapl Source Zone Characterization And Delineation
63(20)
3.1 Introduction
63(1)
3.2 Assessing DNAPL Presence
64(11)
3.2.1 Visual Observation (Line of Evidence A)
65(1)
3.2.2 Soil Concentration
66(3)
3.2.3 Site Use/Site History (Line of Evidence D)
69(1)
3.2.4 Vapor Concentrations (Line of Evidence E)
70(1)
3.2.5 Hydrophobic Dye Testing (Line of Evidence F)
71(1)
3.2.6 Groundwater Concentrations (Line of Evidence G)
71(4)
3.3 Assessing the Presence of Diffused Mass
75(2)
3.4 Source Zone Delineation
77(2)
3.5 Mass Estimates
79(2)
3.5.1 Calculation Procedures for Estimating Mass
79(2)
3.6 Summary
81(2)
References
82(1)
Chapter 4 Advanced Diagnostic Tools
83(30)
4.1 Introduction
83(2)
4.1.1 What Are Diagnostic Tools?
83(1)
4.1.2 Why Are Diagnostic Tools Needed?
83(1)
4.1.3 Overview of Tools Discussed in This
Chapter
84(1)
4.1.4 Utility of Diagnostic Tools for Optimizing Remedial Strategies
85(1)
4.2 Value Added Through Application of Diagnostic Tools
85(2)
4.2.1 Value of Information Analysis
85(1)
4.2.2 Basis for Selection of Diagnostic Tools
86(1)
4.3 Depth Discrete Sampling
87(7)
4.3.1 Multilevel Monitoring Systems
87(4)
4.3.2 Rock Matrix Characterization
91(3)
4.4 Mass Flux/Mass Discharge Measurement Tools
94(3)
4.4.1 Uses
94(1)
4.4.2 Description of Techniques
94(1)
4.4.3 Advantages/Disadvantages
94(1)
4.4.4 Status and Attributes for Selection
95(2)
4.5 Compound-Specific Isotope Analysis
97(3)
4.5.1 Description
97(1)
4.5.2 Regulatory Acceptance
98(1)
4.5.3 Attributes for Selection
98(2)
4.6 Molecular Biological Tools
100(5)
4.6.1 Overview
100(3)
4.6.2 Regulatory Acceptance
103(1)
4.6.3 Attributes for Selection
103(2)
4.7 Value of Information Analysis Summary
105(8)
4.7.1 Summary of Diagnostic Tools
105(1)
4.7.2 Summary of Attributes for Selection
105(2)
4.7.3 Recommendations for Use
107(1)
References
108(5)
Chapter 5 Modeling Source Zone Remediation
113(32)
5.1 Introduction
113(2)
5.2 Analytical Versus Numerical Models
115(1)
5.3 The Components of a Remediation Model
116(7)
5.4 The Modeling Process
123(4)
5.5 Examples
127(13)
5.5.1 Numerical Simulation of DNAPL Remediation in Unconsolidated Media Using Chemical Oxidation
127(9)
5.5.2 Application of In Situ Chemical Oxidation for DNAPL Remediation in Fractured Rock BO
5.5.3 Application of Steam Flushing for DNAPL Remediation
136(4)
5.6 Summary
140(5)
References
140(5)
Chapter 6 Modeling Plume Responses To Source Treatment
145(42)
6.1 Introduction
145(1)
6.2 Key Issues to Consider in Modeling Plume Responses
146(7)
6.3 Modeling Limitations
153(1)
6.4 Available Models
154(2)
6.5 REMChlor Description
156(4)
6.6 Illustrative Examples of REMChlor Simulations
160(12)
6.6.1 Comparing Source and Plume Remediation Effects
160(4)
6.6.2 Modeling a Permeable Reactive Barrier
164(2)
6.6.3 Modeling Remediation of a High-Strength Persistent Source
166(1)
6.6.4 Combining Source and Plume Remediation
166(6)
6.7 Modeling Plume Responses at Challenging Sites
172(9)
6.7.1 Layered Sand--Clay Sequences
172(4)
6.7.2 Fractured Bedrock Sites
176(5)
6.8 Conclusions
181(6)
References
182(5)
Chapter 7 Flux-Based Site Assessment And Management
187(32)
7.1 Introduction
187(3)
7.2 Mass Discharge and Mass Flux as Measures in Site Characterization and Management
190(8)
7.2.1 Fundamental Background
190(2)
7.2.2 Relationship of Mass Depletion and Mass Discharge and Flux
192(1)
7.2.3 Site Mass Balance Considerations
193(2)
7.2.4 Mass Discharge and Flux During Plume Evolution
195(1)
7.2.5 Estimating Source Strength Functions
195(2)
1.2.6 Remedial Considerations
197(1)
7.3 Methods for Mass Discharge and Mass Flux Measurement
198(3)
7.3.1 Transect Method
199(1)
7.3.2 Passive Flux Meters
200(1)
7.3.3 Integral Pump Tests
201(1)
7.4 Fort Lewis DNAPL Case Study for Mass Flux Evaluation
201(7)
7.4.1 Remedial Design Considerations
203(3)
7.4.2 Mass Balance Considerations
206(2)
7.5 Borden Coal Tar Emplacement Experiment Case Study for Mass Flux Evaluation
208(5)
7.5.1 Source Strength Predictions
210(2)
7.5.2 Source Mass Estimation
212(1)
7.5.3 Borden Coal Tar Plume Behavior
213(1)
7.6 Conclusions
213(6)
References
214(5)
Chapter 8 Hydraulic Displacement Of Dense Nonaqueous Phase Liquids
219(34)
8.1 Introduction
219(1)
8.2 Screening Calculations
220(10)
8.2.1 Fundamentals of Multiphase Flow
220(3)
8.2.2 Height of DNAPL Pools
223(2)
8.2.3 Volume of DNAPL in a Pool
225(2)
8.2.4 DNAPL Saturation Corresponding to Measured Soil Concentration
227(1)
8.2.5 Hydraulic Gradient Required to Mobilize Pooled DNAPL
227(3)
8.3 State of the Practice
230(7)
8.3.1 Evaluation and Implementation Process
230(1)
8.3.2 Three-Dimensional Numerical Modeling of Hydraulic Displacement
231(6)
8.4 Case Histories
237(12)
8.4.1 Chlorinated Solvent Hydraulic Displacement Remedy Design
237(10)
8.4.2 Creosote DNAPL Hydraulic Displacement Performance
247(2)
8.5 Summary
249(4)
References
250(3)
Chapter 9 In Situ Chemical Oxidation
253(54)
9.1 Technology Description
253(5)
9.1.1 Overview of ISCO
253(1)
9.1.2 Historical Evolution of ISCO
254(2)
9.1.3 Retrospective Analysis of ISCO Performance and Costs
256(1)
9.1.4 ISCO System Selection, Design, and Implementation
257(1)
9.2 Key Concepts of ISCO and DNAPL Source Zones
258(9)
9.2.1 Chemically Reactive Zones and Mass Transfer
258(2)
9.2.2 Oxidant Properties
260(5)
9.2.3 Oxidant Reactions in the Subsurface
265(2)
9.3 Current Practices for DNAPL Source Zone Treatment using ISCO
267(4)
9.4 Remedial Design Issues and Approaches
271(15)
9.4.1 DNAPL Source Zones and Viability of ISCO
271(1)
9.4.2 Remedial Design Issues
271(11)
9.4.3 Remedial Design and Implementation
282(4)
9.5 Project Monitoring and System Optimization
286(5)
9.5.1 Program Components and Elements
286(1)
9.5.2 Monitoring Phases
287(4)
9.6 Status and Areas for Advancements
291(16)
9.6.1 Status
291(1)
9.6.2 Areas for Advancement
292(2)
References
294(13)
Chapter 10 In Situ Chemical Reduction For Source Remediation
307(46)
10.1 Introduction
307(5)
10.1.1 Technology Development
308(1)
10.1.2 State of the Practice
309(3)
10.2 Technical Background
312(17)
10.2.1 Chlorinated Solvent Degradation Under Reducing Conditions
312(2)
10.2.2 Reductants Contributing to ISCR
314(5)
10.2.3 Treatment of Source Zones
319(3)
10.2.4 Strategies for Delivery
322(6)
10.2.5 Combined Remedies
328(1)
10.3 Implementation
329(7)
10.3.1 Site Delineation and Characterization
329(1)
10.3.2 Technology Assessment and Selection
330(1)
10.3.3 Technology Design and Implementation
331(1)
10.3.4 Case Studies
332(4)
10.4 Synthesis and Recommendations
336(1)
10.4.1 Advantages and Limitations: Lessons Learned
336(1)
10.5 Future Prospects and Needs
337(16)
10.5.1 Near-Term Prospects Without Additional Research
337(1)
10.5.2 Longer-Term Research Needs
337(1)
References
338(15)
Chapter 11 Surfactant And Cosolvent Flushing
353(42)
11.1 Introduction
353(5)
11.1.1 Surfactants
355(2)
11.1.2 Cosolvents
357(1)
11.2 Surfactant and Cosolvent Recovery Mechanisms
358(12)
11.2.1 Enhanced Solubility (Solubilization)
359(5)
11.2.2 NAPL Displacement ("Mobilization")
364(6)
11.3 Surfactant Hushing Case Studies
370(8)
11.3.1 Hill Air Force Base Operable Unit 2
370(4)
11.3.2 Bachman Road Site, Oscoda, Michigan
374(3)
11.3.3 Surfactant Hushing Potential and Limitations
377(1)
11.4 Cosolvent Hushing Case Studies
378(5)
11.4.1 Sages Dry Cleaner Site
379(4)
11.4.2 Cosolvent Hushing Implementation and Limitations
383(1)
11.5 Combined Remediation Strategies for In Situ Hushing
383(2)
11.6 Summary and Conclusions
385(10)
References
386(9)
Chapter 12 In Situ Bioremediation Of Chlorinated Ethene Source Zones
395(64)
12.1 Introduction
395(2)
12.2 Technology Description
397(8)
12.2.1 Technical Basis
397(1)
12.2.2 Enhanced Dissolution and Source Removal During ISB
398(4)
12.2.3 Microbiology of Chlorinated Ethene Biodegradation
402(3)
12.2.4 Practical Implications
405(1)
12.3 Technical Challenges
405(2)
12.3.1 Toxicity
405(1)
12.3.2 pH
406(1)
12.3.3 Substrate Delivery to the Contaminant
407(1)
12.4 Advantages and Limitations
407(2)
12.4.1 Advantages
407(1)
12.4.2 Limitations
408(1)
12.5 Implementation Options
409(5)
12.5.1 Primary or Polishing Technology
410(1)
12.5.2 Active or Passive Treatment
411(1)
12.5.3 Mass Removal or Source Containment
411(1)
12.5.4 Biostimulation or Bioaugmentation
412(1)
12.5.5 Combining ISB with Other Technologies
412(2)
12.6 Design Considerations
414(5)
12.6.1 Site-Specific Challenges
414(2)
12.6.2 Amendment Alternatives
416(2)
12.6.3 Electron Donor Requirements
418(1)
12.6.4 Injection and Delivery
418(1)
12.7 Remedial Objectives
419(2)
12.8 Predicting Performance
421(9)
12.8.1 Modeling ISB at a Field Scale
423(7)
12.9 Operations and Monitoring Issues
430(4)
12.9.1 Operating and Optimizing ISB Systems
430(1)
12.9.2 Monitoring ISB Systems
430(4)
12.10 Case Studies
434(7)
12.10.1 Rice University Experimental Controlled Release System: Biostimulation and Bioaugmentation
435(2)
12.10.2 Dover AFB: Bioaugmentation and Lactate Recirculation
437(1)
12.10.3 Fort Lewis East Gate Disposal Yard: Whey Injections
438(2)
12.10.4 Tarheel Army Missile Plant, North Carolina: Edible Oil Injection
440(1)
12.11 Lessons Learned
441(1)
12.12 Future Developments
442(17)
12.12.1 Improved Understanding and Treatment of Low-Permeability Regions
442(1)
12.12.2 Improving Delivery to DNAPL Accumulations
443(1)
12.12.3 ISB at Fractured Rock Sites
443(1)
12.12.4 Long-Term Performance Predictions and Improvements
443(1)
References
444(15)
Chapter 13 Natural Attenuation Of Chlorinated Solvent Source Zones
459(50)
13.1 Introduction
459(8)
13.1.1 MNA as a Source Zone Remedy
460(1)
13.1.2 Factors Affecting Applicability
461(1)
13.1.3 Life Cycle of Chlorinated Solvent Sources
462(5)
13.2 Key Attenuation Processes
467(11)
13.2.1 Vaporization and Volatilization
468(1)
13.2.2 DNAPL Dissolution
469(5)
13.2.3 Desorption
474(1)
13.2.4 Matrix Diffusion
474(3)
13.2.5 Abiotic Degradation
477(1)
13.2.6 Biotic Degradation
477(1)
13.3 Remedial Goals and Metrics for Source Zone MNA
478(4)
13.3.1 Reducing Source Zone Concentrations and Mass Discharge
478(2)
13.3.2 Effect on Source Longevity
480(1)
13.3.3 Potential for Attaining MCLs
481(1)
13.3.4 Costs
481(1)
13.3.5 Sustainability and Intangible Goals
482(1)
13.4 State of the Practice
482(11)
13.4.1 Regulatory Practices
483(2)
13.4.2 Changing Source Paradigms and Impacts on Management
485(1)
13.4.3 Source Zone MNA Evaluation Techniques
485(6)
13.4.4 Options for Implementation
491(2)
13.5 Modeling Source Zone Monitored Natural Attenuation
493(3)
13.5.1 Simple Data Extrapolation Modeling
493(2)
13.5.2 Analytical Models
495(1)
13.5.3 Numerical Models
495(1)
13.6 Operations, Monitoring and Optimization
496(1)
13.6.1 Observational Approach and Comparison to Predictions
496(1)
13.7 Case Studies
497(4)
13.7.1 Survey of Source Zone MNA Applications
497(1)
13.7.2 Hypothetical Case Study
497(2)
13.7.3 Midwest Manufacturing Facility Case Study
499(2)
13.8 Summary
501(8)
13.8.1 Processes
501(1)
13.8.2 Methods
501(1)
13.8.3 Applications
502(1)
References
502(7)
Chapter 14 In Situ Thermal Treatment Of Chlorinated Solvent Source Zones
509(50)
14.1 Introduction
509(1)
14.2 Fundamental Mechanisms
510(12)
14.2.1 Vapor Formation
510(4)
14.2.2 Partitioning
514(5)
14.2.3 Fluid Properties
519(3)
14.3 Descriptions of Thermal Technologies
522(10)
14.3.1 Steam-Enhanced Extraction
523(2)
14.3.2 Thermal Conductive Heating
525(3)
14.3.3 Electrical Resistance Heating
528(3)
14.3.4 Large-Diameter Auger Mixing with Steam Injection
531(1)
14.3.5 Radio Frequency Heating
532(1)
14.4 Synthesis of Available Data
532(9)
14.4.1 Data Summary
532(6)
14.4.2 Lessons Learned
538(1)
14.4.3 Recommendations for Technology Selection, Application and Performance Assessment
538(3)
14.5 Case Studies
541(12)
14.5.1 NAS Alameda Point, California
541(3)
14.5.2 Fort Lewis, Washington
544(4)
14.5.3 Former Naval Air Warfare Center, Trenton, New Jersey
548(5)
14.6 Summary
553(6)
References
554(5)
Chapter 15 Combined Remedies
559(40)
15.1 Introduction
559(4)
15.1.1 Evolution of Combined Remedies
559(2)
15.1.2 Reasons to Use Combined Remedies
561(1)
15.1.3 Challenges in Combining Technologies
561(2)
15.2 General Types of Combined Remedies
563(1)
15.3 Strategies for Combining Remedial Technologies
564(13)
15.3.1 Sequential Technology Combinations
565(11)
15.3.2 Concurrent Technology Combinations
576(1)
15.4 Prior Applications of Selected Technology Combinations
577(13)
15.4.1 ISCO--ISB Sequential Combination
577(4)
15.4.2 Surfactant/Cosolvent--ISCO Combinations
581(4)
15.4.3 ISCR--ISB Combinations
585(3)
15.4.4 ISCR--ISCO Combinations
588(1)
15.4.5 In Situ Thermal Treatment: ISCO/ISCR/ISB Combinations
588(1)
15.4.6 Surfactant--ISB Combinations
589(1)
15.4.7 Contingent Combined Remedies
590(1)
15.5 Summary
590(9)
References
592(7)
Chapter 16 Cost Analyses For Remedial Options
599(28)
16.1 Introduction
599(1)
16.2 Cost Analysis Process
600(4)
16.2.1 Template Site Descriptions
600(2)
16.2.2 Cost Categories and Components
602(2)
16.3 Remediation Options Evaluated
604(11)
16.3.1 Case 1: Permeable Source Area
604(7)
16.3.2 Case 2: Low Permeability Source Area
611(4)
16.4 Cost Analyses
615(9)
16.4.1 Case 1: Permeable Source Area
615(4)
16.4.2 Case 2: Low Permeability Source Area
619(5)
16.5 Summary
624(3)
References
625(2)
Chapter 17 Groundwater Remediation And The Use Of Alternative Endpoints At Highly Complex Sites
627(26)
17.1 Introduction
627(3)
17.2 Overview of Remedial Approaches at Complex Sites
630(1)
17.3 Active Groundwater Remediation
630(4)
17.3.1 Description
630(2)
17.3.2 Case Studies: Active Remediation
632(2)
17.4 Passive Groundwater Remediation
634(2)
17.4.1 Description
634(1)
17.4.2 Case Study: Passive Remediation
635(1)
17.5 Long Term Management
636(12)
17.5.1 Description
636(1)
17.5.2 Case Studies: Long Term Management
637(2)
17.5.3 Alternative Endpoints
639(1)
17.5.4 Identification of ARARs
640(1)
17.5.5 Case Studies: Identification of ARARs
640(1)
17.5.6 Description of ARAR Waivers
641(2)
17.5.7 Case Studies: ARAR Waivers
643(3)
17.5.8 Description of Alternate Concentration Limits
646(1)
17.5.9 Case Studies: ACLs
647(1)
17.6 Summary and Conclusions
648(5)
References
648(5)
Chapter 18 Future Directions And Research Needs For Source Zone Remediation
653(16)
18.1 Introduction
653(2)
18.2 Remediation Research in Context
655(1)
18.3 Research Needs for Site Characterization
656(2)
18.3.1 Source Zone Delineation and Mass Estimation
656(1)
18.3.2 Source Zone Architecture and Depletion
657(1)
18.3.3 Increased Resolution and Fine-Scale Mapping
658(1)
18.4 Research Needs for Remediation
658(5)
18.4.1 Long-Term Impacts of Source Zone Remediation
659(1)
18.4.2 Remedial Fluid Delivery
660(1)
18.4.3 Combined Remedies
660(1)
18.4.4 Diagnostic and Performance Assessment Tools
660(1)
18.4.5 Improved Containment and Ex Situ Treatment
661(1)
18.4.6 Economic Analyses
661(1)
18.4.7 Technology Performance Models
662(1)
18.4.8 Impacts of Management Strategies
662(1)
18.4.9 Challenging Site Conditions
662(1)
18.5 Technology Transfer Needs
663(1)
18.6 Summary
664(5)
References
666(3)
Appendix A List Of Acronyms, Abbreviations And Symbols 669(6)
Appendix B Unit Conversion Table 675(2)
Appendix C Glossary 677(26)
Index 703