Atjaunināt sīkdatņu piekrišanu

Circulating Tumor Cells: Isolation and Analysis [Hardback]

Edited by , Series edited by (Drake University, Des Moines, IA, USA)
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 172,99 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
Citas grāmatas par šo tēmu:

Introduces the reader to Circulating Tumor Cells (CTCs), their isolation method and analysis, and commercially available platforms 

  • Presents the historical perspective and the overview of the field of circulating tumor cells (CTCs)
  • Discusses the state-of-art methods for CTC isolation, ranging from the macro- to micro-scale, from positive concentration to negative depletion, and from biological-property-enabled to physical-property-based approaches
  • Details commercially available CTC platforms
  • Describes post-isolation analysis and clinical translation
  • Provides a glossary of scientific terms related to CTCs
List of Contributors
xv
Foreword xxi
Preface xxv
PART I INTRODUCTION
1(50)
1 Circulating Tumor Cells and Historic Perspectives
3(30)
Jonathan W. Uhr
1.1 Early Studies on Cancer Dormancy Led to the Development of a Sensitive Assay for CTCs (1970--1998)
3(3)
1.2 Modern Era for Counting CTCs: 1998--2007
6(1)
1.3 Proof of Malignancy of CTCs
7(1)
1.4 New Experiments Involving CTCs
7(1)
1.5 Clinical Cancer Dormancy
8(2)
1.6 Human Epidermal Growth Factor Receptor 2 (HER2) Gene Amplification can be Acquired as Breast Cancer Progresses
10(1)
1.7 uPAR and HER2 Co-amplification
11(1)
1.8 Epithelial--Mesenchymal Transition (EMT)
12(2)
1.9 New Instruments to Capture CTCs
14(1)
1.10 Genotypic Analyses
15(3)
1.11 Conclusions
18(15)
References
20(13)
2 Introduction to Microfluidics
33(18)
Kangfu Chen
Z. Hugh Fan
2.1 Introduction
33(3)
2.1.1 Brief History
33(1)
2.1.2 Fluids
34(1)
2.1.3 Microfluidics
34(1)
2.1.4 Advantages of Microfluidics
35(1)
2.2 Scaling Law
36(3)
2.2.1 Laminar Flow
36(1)
2.2.2 Flow Rate
37(1)
2.2.3 Diffusion
38(1)
2.3 Device Fabrication
39(4)
2.3.1 Materials
39(1)
2.3.2 Fabrication Methods
40(1)
2.3.2.1 Photolithography
40(1)
2.3.2.2 Etching
41(1)
2.3.2.3 Bonding
42(1)
2.3.2.4 Molding
42(1)
2.4 Functional Components in Microfluidic Devices
43(3)
2.4.1 Micropumps
43(1)
2.4.1.1 Mechanical Pumps
43(1)
2.4.1.2 Nonmechanical Pumps
44(1)
2.4.2 Microvalves
44(1)
2.4.3 Micromixers
45(1)
2.4.4 Other Components
46(1)
2.5 Concluding Remarks
46(5)
References
47(4)
PART II ISOLATION METHODS
51(262)
3 Ensemble-decision Aliquot Ranking (eDAR) for CTC Isolation and Analysis
53(32)
Mengxia Zhao
Perry G. Schiro
Daniel T. Chiu
3.1 Overview of eDAR
53(2)
3.2 Individual Components and Analytical Performance of eDAR
55(14)
3.2.1 Aliquot Ranking
55(4)
3.2.2 Aliquot Sorting
59(1)
3.2.2.1 Active Sorting Scheme Based on an On-Chip Solenoid
59(1)
3.2.2.2 Active Sorting Scheme Based on an Off-Chip Solenoid
60(3)
3.2.3 On-Chip Purification
63(1)
3.2.3.1 Purification via Integrated Planar Filter
63(1)
3.2.3.2 Purification via Microfabricated Slits
64(1)
3.2.4 Secondary Labeling and the Enumeration of CTCs
65(2)
3.2.5 Characterization and Analytical Performance of eDAR
67(2)
3.3 Application and Downstream Analyses of eDAR
69(11)
3.3.1 Enumeration of CTCs from Cancer Patients using eDAR
69(2)
3.3.2 Downstream Analysis of CTCs Isolated by eDAR
71(4)
3.3.3 Automated High-Throughput Counting of CTCs -- A "Simplified" Version of eDAR
75(5)
3.4 Conclusion and Perspective
80(5)
References
81(4)
4 Sinusoidal Microchannels with High Aspect Ratios for CTC Selection and Analysis
85(42)
Joshua M. Jackson
Malgorzata A. Witek
Steven A. Soper
4.1 Introduction
85(5)
4.1.1 Brief Perspective
85(2)
4.1.2 Overview of CTC Selection Modalities and Assay Metrics
87(3)
4.2 Parallel Arrays of High-Aspect-Ratio, Sinusoidal Microchannels for CTC Selection
90(24)
4.2.1 Production of CTC In Vitro Diagnostic Devices in Thermoplastics
91(3)
4.2.2 Activation of High-Aspect-Ratio Microchannels for Efficient Ab Immobilization
94(5)
4.2.3 CTC Selection in Sinusoidal Microchannels from a Fluid Dynamics Perspective
99(1)
4.2.3.1 Centrifugal Forces in Curved Microchannels
100(4)
4.2.3.2 Transient Dynamics of CTC-Ab Binding
104(3)
4.2.4 Parallel Arrays for High-Throughput Sample Processing
107(7)
4.3 Clinical Applications of Sinusoidal CTC Microchip
114(4)
4.4 Conclusion
118(9)
Acknowledgments
119(1)
References
119(8)
5 Cell Separation using Inertial Microfluidics
127(20)
Nivedita Nivedita
Ian Papautsky
5.1 Introduction
127(1)
5.2 Device Fabrication and System Setup
128(1)
5.3 Inertial Focusing in Microfluidics
129(3)
5.4 Cancer Cell Separation in Straight Microchannels
132(4)
5.5 Cancer Cell Separation in Spiral Microchannels
136(6)
5.6 Conclusions
142(5)
References
142(5)
6 Morphological Characteristics of CTCs and the Potential for Deformability-Based Separation
147(26)
Simon P. Duffy
Hongshen Ma
6.1 Introduction
147(1)
6.2 Limitations of Antibody-based CTC Separation Methods
148(1)
6.3 Morphological and Biophysical Differences Between CTCs and Hematological Cells
149(4)
6.4 Historical and Recent Methods in CTC Separation Based on Biophysical Properties
153(2)
6.5 Microfluidic Ratchet for Deformability-Based Separation of CTCs
155(5)
6.5.1 Microfluidic Ratchet Mechanism
155(1)
6.5.2 Design of the Microfluidic Ratchet
156(2)
6.5.3 Validation of the Microfluidic Ratchet Mechanism
158(1)
6.5.4 Viability of Cells Enriched by the Microfluidic Ratchet Mechanism
159(1)
6.6 Resettable Cell Trap for Deformability-based Separation of CTCs
160(5)
6.6.1 Resettable Cell Trap Mechanism
160(3)
6.6.2 Validation of the Resettable Cell Trap Device
163(1)
6.6.3 Application of the Resettable Cell Trap for CTC Enrichment
164(1)
6.7 Summary
165(8)
References
166(7)
7 Microfabricated Filter Membranes for Capture and Characterization of Circulating Tumor Cells (CTCs)
173(10)
Zheng Ao
Richard J. Cote
Ram H. Datar
Anthony Williams
7.1 Introduction
173(1)
7.2 Size-based Enrichment of Circulating Tumor Cells
174(3)
7.3 Comparison Between Size-based CTC Isolation and Affinity-based Isolation
177(1)
7.4 Characterization of CTCs Captured by Microfilters
178(2)
7.4.1 Genomic Analysis of CTCs Enriched by Microfabricated Filter Membrane
178(1)
7.4.2 Gene Expression Analysis of CTC Enriched by Microfabricated Filter Membrane
179(1)
7.4.3 Functional Characterization of CTCs Enriched by Microfabricated Filter Membrane
180(1)
7.5 Conclusion
180(3)
References
181(2)
8 Miniaturized Nuclear Magnetic Resonance Platform for Rare Cell Detection and Profiling
183(18)
Sangmoo Jeong
Changwook Min
Huilin Shao
Cesar M. Castro
Ralph Weissleder
Hakho Lee
8.1 Introduction
183(1)
8.2 μNMR Technology
184(7)
8.2.1 Magnetic Nanoparticles with High Transverse Relaxivity
185(3)
8.2.2 Bioorthogonal Strategy for Efficient MNP Labeling
188(1)
8.2.3 Miniaturized NMR Probe
188(3)
8.3 Clinical Application of μNMR for CTC Detection and Profiling
191(5)
8.3.1 Quad-Marker Assay Integrated with μNMR
192(1)
8.3.2 Comparison of Biomarkers in CTC and Bulk Tumor Cell
192(4)
8.4 Conclusion
196(5)
References
196(5)
9 Nanovelcro Cell-Affinity Assay for Detecting and Characterizing Circulating Tumor Cells
201(26)
Millicent Lin
Anna Fong
Sharon Chen
Yang Zhang
Jie-Fu Chen
Paulina Do
Morgan Fong
Shang-Fu Chen
Pauline Yang
An-Jou Liang
Qingyu Li
Min Song
Shuang Hou
Hsian-Rong Tseng
9.1 Introduction
202(5)
9.1.1 Circulating Tumor Cells
202(1)
9.1.2 Current CTC Capture Methods
202(3)
9.1.3 The Evolution of NanoVelcro Cell-Affinity Assays
205(1)
9.1.4 Nanostructured Substrates for Cell Biology
206(1)
9.2 Proof-of-Concept Demonstration of NanoVelcro Cell-Affinity Substrates
207(2)
9.2.1 Stationary NanoVelcro CTC Assay
207(1)
9.2.2 General Applicability of NanoVelcro CTC Substrates
207(2)
9.3 First-Generation NanoVelcro Chips for CTC Enumeration
209(5)
9.3.1 Device Configuration of First-Generation NanoVelcro Chips
209(3)
9.3.2 Clinical Utility of First-Generation NanoVelcro Chips
212(1)
9.3.3 An Alternative Capture Agent, Aptamer
213(1)
9.4 Second-Generation NanoVelcro-LMD Technology for Single CTC Isolation
214(5)
9.4.1 Preparation of PLGA NanoVelcro Chips
215(1)
9.4.2 NanoVelcro-LMD Technology and Mutational Analysis
215(1)
9.4.3 NanoVelcro-LCM Technology and Whole Exome Sequencing
215(4)
9.5 Third-Generation Thermoresponsive NanoVelcro Chips
219(1)
9.6 Conclusions and Future Perspectives
220(7)
Acknowledgment
221(1)
References
221(6)
10 Acoustophoresis in Tumor Cell Enrichment
227(22)
Per Augustsson
Cecilia Magnusson
Hans Lilja
Thomas Laurell
10.1 Introduction
227(3)
10.1.1 Background
227(2)
10.1.2 System Specification
229(1)
10.2 Factors Determining Acoustophoresis Cell Separation
230(4)
10.2.1 Acoustic Field
231(1)
10.2.2 Acoustic Radiation Force
231(1)
10.2.3 Trajectory of a Cell
232(1)
10.2.4 The MicroChannel Flow Profile
233(1)
10.3 Acoustophoresis System for Separating Cells
234(5)
10.3.1 Acoustophoresis Chip
234(1)
10.3.2 Actuation of Ultrasound
234(1)
10.3.3 Flow System
234(2)
10.3.4 Sample Preparation and Analysis
236(1)
10.3.4.1 Blood and Cancer Cell Preparation
236(1)
10.3.4.2 Cell Labeling
236(1)
10.3.5 Device Testing
237(1)
10.3.5.1 Varying the Flow Rate
237(1)
10.3.5.2 Cancer Cell Number
237(1)
10.3.5.3 Cancer Cell Diversity
237(2)
10.4 Acoustophoresis Platform for Clinical Sample Processing
239(5)
10.4.1 The Acoustophoresis Chip
239(2)
10.4.2 Flow System
241(1)
10.4.2.1 Pressure-Driven Flow
241(1)
10.4.2.2 Operation of the Flow System for Cell Separation
241(1)
10.4.3 Temperature Control System
242(1)
10.4.4 Software Interface
242(1)
10.4.5 System Calibration using Microbeads
243(1)
10.4.6 Cell Separations
244(1)
10.5 Unperturbed Cell Survival and Phenotype after Microchip Acoustophoresis
244(2)
10.6 Summary
246(3)
References
246(3)
11 Photoacoustic Flow Cytometry for Detection and Capture of Circulating Melanoma Cells
249(18)
John A. Viator
Benjamin S. Goldschmidt
Kiran Bhattacharyya
Kyle Rood
11.1 Introduction
249(5)
11.1.1 Biomedical Photoacoustics
251(1)
11.1.2 Photoacoustic Flow Cytometry
251(3)
11.2 Current Methods for Detection and Capture of CMCs
254(5)
11.2.1 Two-Phase Flow for Cell Capture
255(1)
11.2.2 Photoacoustic Flow Cytometer
256(1)
11.2.3 Blood Sample Preparation
256(2)
11.2.4 Capture Process
258(1)
11.2.5 Results of CMC Capture Study
259(1)
11.3 Discussion
259(2)
11.3.1 Extension to Nonpigmented CTCs
260(1)
11.4 Future Work
261(6)
References
262(5)
12 Selectin-Mediated Targeting of Circulating Tumor Cells for Isolation and Treatment
267(20)
Jocelyn R. Marshall
Michael R. King
12.1 Introduction
267(4)
12.1.1 Selectin Adhesion
267(3)
12.1.2 Circulating Tumor Cells
270(1)
12.2 CTC Capture by E-selectin
271(2)
12.3 Applications for E-selectin in Cancer Diagnosis and Treatment
273(5)
12.3.1 E-Selectin Capture for Drug Efficacy Testing
273(1)
12.3.2 E-Selectin for use in Targeted Cancer Therapy
274(4)
12.4 Conclusions
278(9)
References
279(8)
13 Aptamer-Enabled Tumor Cell Isolation
287(14)
Jinling Zhang
Z. Hugh Fan
13.1 Introduction
287(1)
13.2 Aptamers and their Biomedical Applications
288(2)
13.2.1 Identification of Aptamers
288(1)
13.2.2 Aptamers versus Antibodies
289(1)
13.2.3 List of Aptamers
290(1)
13.3 Aptamer-based Tumor Cell Isolation
290(7)
13.3.1 Aptamers with Microfluidics
290(1)
13.3.1.1 Device Designs
290(3)
13.3.1.2 Surface Functionalization
293(1)
13.3.1.3 Tumor Cell Isolation
293(1)
13.3.1.4 Instrument Setup
293(1)
13.3.2 Aptamers with Nanoparticles
294(1)
13.3.3 Aptamers with Innovative Schemes
295(1)
13.3.4 Aptamers for CTC Isolation
296(1)
13.4 Conclusion and Outlook
297(4)
References
297(4)
14 Depletion of Normal Cells for CTC Enrichment
301(12)
Jeffrey J. Chalmers
Maryam B. Lustberg
Clayton Deighan
Kyoung-Joo Jenny Park
Yongqi Wu
Peter Amaya
14.1 Introduction
301(1)
14.2 Estimates of Number and Type of Cells in Blood
302(1)
14.3 Summary of Examples of Negative Depletion
303(2)
14.3.1 Removal of RBCs
303(1)
14.3.2 Removal of Normal Nucleated Cells
304(1)
14.4 Types of Cells Observed After Depletion of Normal Cells
305(1)
14.5 Incomplete Depletion of Normal Cells
305(5)
14.6 Conclusion
310(3)
References
311(2)
PART III POST-ISOLATION ANALYSIS AND CLINICAL TRANSLATION
313(52)
15 Tumor Heterogeneity and Single-cell Analysis of CTCs
315(14)
Evelyn K. Sigal
Stefanie S. Jeffrey
15.1 Introduction
315(1)
15.2 Tumor Heterogeneity
316(2)
15.3 Single-Cell Analysis of CTCs and CTC Heterogeneity
318(1)
15.4 Gene Expression Analysis
319(2)
15.5 Mutational Analysis
321(2)
15.6 Conclusion: Clinical Implications and Future Perspectives
323(6)
References
324(5)
16 Single-Cell Molecular Profiles and Biophysical Assessment of Circulating Tumor Cells
329(22)
Devalingam Mahalingam
Pawel Osmulski
Chiou-Miin Wang
Aaron M. Horning
Anna D. Louie
Chun-Lin Lin
Maria E. Gaczynska
Chun-Liang Chen
16.1 Introduction
329(2)
16.2 Methods
331(5)
16.2.1 Single-Cell Molecular Profiling
331(1)
16.2.1.1 High-Throughput Single-Cell qRT-PCR using Microfluidic BioMark™ HD
332(1)
16.2.1.2 Single-Cell Transcriptome Analysis using Gene Expression Microarray
332(1)
16.2.1.3 Single-Cell RNA-Seq
333(1)
16.2.2 Probing Cellular Biophysical Properties of Single Cells
333(1)
16.2.2.1 The Instruments for Biophysical Assessment of Single Cells
333(3)
16.2.2.2 The Biophysical Parameters of Single Cells
336(1)
16.3 CTC Applications
336(6)
16.3.1 Single-cell Molecular Profiling of CTCs
336(5)
16.3.2 Analysis of Nanomechanical Phenotypes of Single CTCs
341(1)
16.4 Conclusions
342(9)
References
343(8)
17 Directing Circulating Tumor Cell Technologies Into Clinical Practice
351(14)
Benjamin P. Casavant
David Kosoff
Joshua M. Lang
17.1 Introduction
351(1)
17.2 Defining Biomarkers
352(4)
17.2.1 Prognostic CTC Biomarkers
353(2)
17.2.2 Predictive CTC Biomarkers
355(1)
17.2.3 Pharmacodynamic CTC Biomarkers
355(1)
17.2.4 Diagnostic CTC Biomarkers
356(1)
17.2.5 Surrogate CTC Biomarkers
356(1)
17.3 The Technology
356(1)
17.3.1 Translated Technologies
357(1)
17.4 Translating Technology
357(3)
17.4.1 The Technology Side
358(2)
17.4.2 The Clinic Side
360(1)
17.5 Conclusions
360(5)
References
361(4)
PART IV COMMERCIALIZATION
365(36)
18 DEPArray™ Technology for Single CTC Analysis
367(10)
Farideh Z. Bischoff
Gianni Medoro
Nicolo Manaresi
18.1 Challenges in Molecular Profiling of CTCs
367(1)
18.2 DEPArray™ Technology Solution
368(1)
18.3 DEPArray™ for Single Tumor Cell Analysis
369(4)
18.4 Clinical Significance in Single CTC Profiling
373(1)
18.5 Conclusion
374(3)
References
374(3)
19 CELLSEARCH® Instrument, Features, and Usage
377(24)
Denis A. Smirnov
Brad W. Foulk
Mark C. Connelly
Robert T. McCormack
19.1 Introduction
377(2)
19.2 Principles of CELLSEARCH®
379(1)
19.3 EpCAM Density and CTC Capture
380(3)
19.4 Clinical Applications of CELLSEARCH® CTCs
383(7)
19.4.1 CTC Enumeration
383(1)
19.4.2 Expanding Enumeration
384(1)
19.4.3 CTC Enumeration and Clinical Utility
385(2)
19.4.4 Characterization of CTCs using CELLSEARCH®
387(3)
19.5 Beyond EpCAM Capture
390(1)
19.6 Discussion
391(10)
References
394(7)
PART V GLOSSARY
401(2)
Circulating Tumor Cell Glossary 403(20)
Jose I. Varillas
Z. Hugh Fan
Index 423
Z. Hugh Fan, PhD, is a professor of the Department of Mechanical and Aerospace Engineering, J. Crayton Pruitt Family Department of Biomedical Engineering, and Department of Chemistry at the University of Florida (UF), USA. Prior to joining UF in 2003, Dr. Fan was a Principal Scientist at ACLARA BioSciences Inc. and was previously a Member of the Technical Staff at Sarnoff Corp. Dr. Fan has been recognized with E.T.S. Walton Award from Science Foundation of Ireland in 2009, Fraunhofer-Bessel Research Award from Alexander von Humboldt Foundation (Germany) in 2010, and UF Research Foundation Professorship in 2014.