List of authors |
|
xiii | |
|
1. Introduction to cladistic concepts |
|
|
1 | (18) |
|
1.1 Definition of relationship |
|
|
1 | (1) |
|
|
2 | (3) |
|
|
5 | (5) |
|
|
10 | (5) |
|
|
15 | (2) |
|
|
17 | (1) |
|
|
18 | (1) |
|
2. Characters and character coding |
|
|
19 | (19) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (3) |
|
2.2.1 Qualitative and quantitative variables |
|
|
20 | (1) |
|
2.2.2 Discrete and continuous variables |
|
|
21 | (1) |
|
2.2.3 Overlapping and non-overlapping characters |
|
|
22 | (1) |
|
|
23 | (4) |
|
2.3.1 Diagnostic and systematic characters |
|
|
23 | (2) |
|
2.3.2 Character transformations |
|
|
25 | (1) |
|
2.3.3 Characters and character states |
|
|
25 | (1) |
|
|
26 | (1) |
|
2.4 Character coding for discrete variables |
|
|
27 | (6) |
|
2.4.1 Multistate characters-character linkage during analysis |
|
|
29 | (1) |
|
2.4.2 Binary characters-character linkage during analysis |
|
|
29 | (1) |
|
2.4.3 Hierarchical character linkage |
|
|
30 | (1) |
|
2.4.4 Transformation between character states: order and polarity |
|
|
30 | (1) |
|
2.4.5 Missing values and coding |
|
|
31 | (1) |
|
2.4.6 Information content and the congruence test |
|
|
32 | (1) |
|
2.5 Morphometric data in cladistic analysis |
|
|
33 | (2) |
|
2.5.1 Coding morphometric data |
|
|
33 | (1) |
|
|
33 | (2) |
|
2.6 Discussion: character discovery and coding |
|
|
35 | (2) |
|
2.6.1 Choice of characters |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
3. Cladogram construction, character polarity and rooting |
|
|
38 | (32) |
|
3.1 Discovering the most parsimonious cladograms |
|
|
38 | (10) |
|
3.1.1 Hennigian argumentation |
|
|
38 | (1) |
|
|
39 | (3) |
|
|
42 | (1) |
|
|
43 | (2) |
|
|
45 | (3) |
|
3.2 Character polarity and rooting |
|
|
48 | (20) |
|
3.2.1 Outgroup comparison |
|
|
49 | (5) |
|
3.2.2 The ontogenetic criterion |
|
|
54 | (5) |
|
3.2.3 Ontogenetic criterion or outgroup comparison-which is superior? |
|
|
59 | (1) |
|
3.2.4 A priori models of character state change |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (2) |
|
3.2.5 Polarity and rooting a posteriori |
|
|
64 | (4) |
|
|
68 | (2) |
|
4. Optimization and the effects of missing values |
|
|
70 | (22) |
|
4.1 Optimality criteria and character optimization |
|
|
70 | (9) |
|
4.1.1 Wagner optimization |
|
|
70 | (3) |
|
|
73 | (2) |
|
|
75 | (2) |
|
4.1.4 Camin-Sokal optimization |
|
|
77 | (1) |
|
4.1.5 Generalized optimization |
|
|
78 | (1) |
|
|
79 | (12) |
|
|
91 | (1) |
|
5. Measures of character fit and character weighting |
|
|
92 | (26) |
|
5.1 Measures of character fit |
|
|
92 | (7) |
|
|
92 | (3) |
|
5.1.2 Consistency index(ci) |
|
|
95 | (1) |
|
5.1.3 Ensemble consistency index (CI) |
|
|
95 | (1) |
|
5.1.4 Problems with the consistency index |
|
|
96 | (1) |
|
5.1.5 Retention index (ri) |
|
|
97 | (2) |
|
5.1.6 Ensemble retention index (RI) |
|
|
99 | (1) |
|
|
99 | (17) |
|
5.2.1 Types of character weighting |
|
|
100 | (1) |
|
|
100 | (1) |
|
|
100 | (1) |
|
|
101 | (1) |
|
|
102 | (6) |
|
|
108 | (2) |
|
5.2.3 A posteriori weighting |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
112 | (3) |
|
|
115 | (1) |
|
|
116 | (2) |
|
6. Support and confidence statistics for cladograms and groups |
|
|
118 | (21) |
|
|
118 | (1) |
|
6.2 Randomization procedures applied to the whole cladogram |
|
|
118 | (8) |
|
|
119 | (1) |
|
6.2.2 Distribution of cladogram lengths (DCL) |
|
|
120 | (2) |
|
6.2.3 Permutation tail probability (PTP) |
|
|
122 | (4) |
|
6.3 Support for individual clades on a cladogram |
|
|
126 | (9) |
|
|
127 | (2) |
|
6.3.2 Randomization procedures |
|
|
129 | (1) |
|
|
129 | (2) |
|
|
131 | (2) |
|
|
133 | (1) |
|
Topology-dependent permutation tail probability (T-PTP) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
136 | (3) |
|
|
139 | (12) |
|
|
139 | (2) |
|
7.2 Strict consensus trees |
|
|
141 | (2) |
|
7.3 Combinable components or semi-strict consensus |
|
|
143 | (2) |
|
7.4 Majority-rule and median consensus trees |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
147 | (1) |
|
7.7 Agreement subtrees or common pruned trees |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
149 | (2) |
|
8. Simultaneous and partitioned analysis |
|
|
151 | (17) |
|
|
151 | (4) |
|
|
155 | (2) |
|
8.3 Partitioned analysis (taxonomic congruence) |
|
|
157 | (3) |
|
8.3.1 Independence of data sets |
|
|
157 | (2) |
|
|
159 | (1) |
|
8.3.3 Different sized data sets |
|
|
159 | (1) |
|
8.4 Simultaneous analysis |
|
|
160 | (2) |
|
|
160 | (1) |
|
8.4.2 Arbitrary consensus |
|
|
161 | (1) |
|
8.5 Conditional data combination |
|
|
162 | (2) |
|
8.6 Operational difficulties |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
166 | (2) |
|
9. Three-item statements analysis |
|
|
168 | (19) |
|
|
168 | (1) |
|
|
168 | (2) |
|
|
170 | (10) |
|
|
170 | (1) |
|
9.3.2 Multistate characters |
|
|
171 | (1) |
|
9.3.3 Representation of three-item statements for analysis with current parsimony programs |
|
|
171 | (1) |
|
9.3.4 Cladogram length and three-item statements |
|
|
172 | (1) |
|
9.3.5 Uniform and fractional weighting |
|
|
173 | (4) |
|
|
177 | (1) |
|
|
178 | (1) |
|
9.3.8 Information measures: CI and RI |
|
|
179 | (1) |
|
9.3.9 Summary of implementation procedures |
|
|
180 | (1) |
|
|
180 | (5) |
|
|
185 | (2) |
References |
|
187 | (9) |
Suggestions for further reading |
|
196 | (3) |
Glossary |
|
199 | (22) |
Appendix: Computer programs |
|
221 | (2) |
Index |
|
223 | |