Atjaunināt sīkdatņu piekrišanu

E-grāmata: Classical and Quantum 6j-symbols

  • Formāts: 176 pages
  • Sērija : Mathematical Notes
  • Izdošanas datums: 10-Aug-2021
  • Izdevniecība: Princeton University Press
  • Valoda: eng
  • ISBN-13: 9780691234670
  • Formāts - PDF+DRM
  • Cena: 74,51 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 176 pages
  • Sērija : Mathematical Notes
  • Izdošanas datums: 10-Aug-2021
  • Izdevniecība: Princeton University Press
  • Valoda: eng
  • ISBN-13: 9780691234670

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Addressing physicists and mathematicians alike, this book discusses the finite dimensional representation theory of sl(2), both classical and quantum. Covering representations of U(sl(2)), quantum sl(2), the quantum trace and color representations, and the Turaev-Viro invariant, this work is useful to graduate students and professionals.The classic subject of representations of U(sl(2)) is equivalent to the physicists theory of quantum angular momentum. This material is developed in an elementary way using spin-networks and the Temperley-Lieb algebra to organize computations that have posed difficulties in earlier treatments of the subject. The emphasis is on the 6j-symbols and the identities among them, especially the Biedenharn-Elliott and orthogonality identities. The chapter on the quantum group Uq(sl(2)) develops the representation theory in strict analogy with the classical case, wherein the authors interpret the Kauffman bracket and the associated quantum spin-networks algebraically. The authors then explore instances where the quantum parameter q is a root of unity, which calls for a representation theory of a decidedly different flavor. The theory in this case is developed, modulo the trace zero representations, in order to arrive at a finite theory suitable for topological applications. The Turaev-Viro invariant for 3-manifolds is defined combinatorially using the theory developed in the preceding chapters. Since the background from the classical, quantum, and quantum root of unity cases has been explained thoroughly, the definition of this invariant is completely contained and justified within the text.

Recenzijas

"Overall this book would serve as an excellent introduction for students or mathematicians to any of the subjects included (representation theory of U(sl2) and Uq(sl2), Penrose/Kauffman style diagrammatics, Turaev-Viro theory)... "--Mathematical Reviews

Foreword ix
Introduction
3(4)
Representations of U(sl(2))
7(60)
Basic definitions
7(1)
Finite dimensional irreducible representations
7(5)
Diagrammatics of U (sl(2)) invariant maps
12(3)
The Temperley-Lieb algebra
15(6)
Tensor Products of irreducible representations
21(6)
The 6j-symbols
27(16)
Computations
43(20)
A recursion formula for the 6j-symbols
63(2)
Remarks
65(2)
Quantum sl(2)
67(60)
Some finite dimensional representations
67(3)
Representations of the braid groups
70(4)
A finite dimensional quotient of C[ B(n)]
74(3)
A model for the representations VjA
77(3)
The Jones-Wentzl projectors
80(13)
The quantum Clebsch-Gordan theory
93(6)
Quantum network evaluation
99(7)
The quantum 6j-symbols--generic case
106(4)
Diagrammatics of weight vectors (quantum case)
110(1)
Twisting rules
111(12)
Symmetries
123(2)
Further identities among the quantum 6j-symbols
125(2)
The Quantum Trace and Color Representations
127(24)
The quantum trace
127(3)
A bilinear form on tangle diagrams
130(3)
Color representations
133(6)
The quantum 6j-symbol--root of unity case
139(12)
The Turaev-Viro Invariant
151(9)
The definition of the Turaev-Viro invariant
151(6)
Epilogue
157(3)
References 160


J. Scott Carter is Associate Professor and Daniel E. Flath is Associate Professor, both in the Department of Mathematics at the University of South Alabama. Masahico Saito is Assistant Professor of Mathematics at the University of South Florida.