Atjaunināt sīkdatņu piekrišanu

Classical And Quantum Dynamics Of Constrained Hamiltonian Systems [Hardback]

(Univ Heidelberg, Germany), (Univ Heidelberg, Germany)
  • Formāts: Hardback, 316 pages
  • Sērija : World Scientific Lecture Notes In Physics 81
  • Izdošanas datums: 15-Apr-2010
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9814299642
  • ISBN-13: 9789814299640
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 143,15 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 316 pages
  • Sērija : World Scientific Lecture Notes In Physics 81
  • Izdošanas datums: 15-Apr-2010
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9814299642
  • ISBN-13: 9789814299640
Citas grāmatas par šo tēmu:
"This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field-antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. All topics are well illustrated with examples emphasizing points of central interest. The book should enable graduate students to follow the literature on this subject without much problems, and to perform research in this field."--pub. desc.

This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field-antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. All topics are well illustrated with examples emphasizing points of central interest. The book should enable graduate students to follow the literature on this subject without much problems, and to perform research in this field.



1 Introduction
1(5)
2 Singualar Lagrangians and Local Symmetries
6(18)
2.1 Introduction
6(1)
2.2 Singular Lagrangians
7(2)
2.3 Algorithm for detecting local symmetries on Lagrangian level
9(5)
2.4 Examples
14(6)
2.5 Generator of gauge transformations and Noether identities
20(4)
3 Hamiltonian Approach. The Dirac Formalism
24(27)
3.1 Introduction
24(1)
3.2 Primary constraints
24(3)
3.3 The Hamilton equations of motion
27(16)
3.3.1 Streamlining the Hamilton equations of motion
29(4)
3.3.2 Alternative derivation of the Hamilton equations
33(4)
3.3.3 Examples
37(6)
3.4 Iterative procedure for generating the constratints
43(3)
3.4.1 Particular algorithm for generating the constraints
44(2)
3.5 First and second class constraints. Dirac brackets
46(5)
4 Symplectic Approach to Constrained Systems
51(16)
4.1 Introduction
51(3)
4.2 The case fab singular
54(6)
4.2.1 Example: particle on a hypersphere
58(2)
4.3 Interpretation of W(L) and F
60(2)
4.4 The Faddeev-Jackiw reduction
62(5)
5 Local Symmetries within the Dirac Formalism
67(23)
5.1 Introduction
67(1)
5.2 Local symmetries and canonical transformations
68(2)
5.3 Local symmetries of the Hamilton equations of motion
70(2)
5.4 Local symmetries of the total and extended action
72(3)
5.5 Local symmetries of the Lagrangian action
75(3)
5.6 Solution of the recursive relations
78(5)
5.7 Reparametrization invariant approach
83(7)
6 The Dirac Conjecture
90(18)
6.1 Introduction
90(1)
6.2 Gauge identites and Dirac's conjecture
90(8)
6.3 General system with two primaries and one secondary constraint
98(3)
6.4 Counterexamples to Dirac's conjecture?
101(7)
7 BFT Embedding of Second Class Systems
108(24)
7.1 Introduction
108(1)
7.2 Summary of the BFT-procedure
109(4)
7.3 The BFT construction
113(3)
7.4 Examples of BFT embedding
116(16)
7.4.1 The multidimensional rotator
116(2)
7.4.2 The Abelian self-dual model
118(3)
7.4.3 Abelian self-dual model and Maxwell-Chern-Simons theory
121(5)
7.4.4 The non-abelian SD model
126(6)
8 Hamilton-Jacobi Theory of Constrained Systems
132(22)
8.1 Introduction
132(5)
8.1.1 Caratheodory's integrability conditions
133(2)
8.1.2 Characteristic curves of the HJ-equations
135(2)
8.2 HJ equations for first class systems
137(2)
8.3 HJ equations for second class systems
139(15)
8.3.1 HPF for reduced second class systems
139(2)
8.3.2 Examples
141(4)
8.3.3 HJ equations for second class systems via BFT embedding
145(3)
8.3.4 Examples
148(6)
9 Operator Quantization of Second Class Systems
154(10)
9.1 Introduction
154(1)
9.2 Systems with only second class constraints
155(1)
9.3 Systems with first and second class constraints
156(8)
9.3.1 Example: the free Maxwell field in the Coulomb gauge
160(2)
9.3.2 Concluding remark
162(2)
10 Functional Quantization of Second Class Systems
164(10)
10.1 Introduction
164(1)
10.2 Partition function for second class systems
165(9)
11 Dynamical Gauges. BFV Functional Quantization
174(49)
11.1 Introduction
174(1)
11.2 Grassmann variables
175(6)
11.3 BFV quantization of a quantum mechanical model
181(14)
11.3.1 The gauge-fixed effective Lagrangian
182(4)
11.3.2 The conserved BRST charge in configuration space
186(1)
11.3.3 The gauge fixed effective Hamiltonian
187(3)
11.3.4 The BRST charge in phase space
190(5)
11.4 Quantization of Yang-Mills thery in the Lorentz gauge
195(9)
11.5 Axiomatic BRST apprach
204(11)
11.5.1 The BRST charge and Hamiltonian for rank one theories
205(4)
11.5.2 FV Principal Theorem
209(2)
11.5.3 A large class of gauges
211(1)
11.5.4 Connecting Zψ with the quantum partition function in a physical gauge. The SU (N) Yang-Mills theory
212(3)
11.6 Equivalence of the SD and MCS models
215(6)
11.7 The physical Hilbert space. Some remarks
221(2)
12 Field-Antifield Quantization
223(48)
12.1 Introduction
223(1)
12.2 Axiomatic field-antifield formalism
224(7)
12.3 Constructive proof of the field-antifield formalism for a restricted class of theories
231(16)
12.3.1 From the FV-phase-space action to the Hamiltonian master equation
232(6)
12.3.2 Transition to configuration space
238(9)
12.4 The Lagrangian master equation
247(6)
12.5 The quantum master equation
253(8)
12.5.1 An alternative derivation of the quantum master equation
256(3)
12.5.2 Gauge invariant correlation functions
259(2)
12.6 Anomalous gauge theories. The chiral Schwinger model
261(10)
12.6.1 Quantum Master equation and the anomaly
265(6)
A Local Symmetries and Singular Lagrangians
271(7)
A.1 Local symmetry transformations
271(3)
A.2 Bianchi identities and singular Lagrangians
274(4)
B The BRST Charge of Rank One
278(3)
C BRST Hamiltonian of Rank One
281(2)
D The FV Principal Theorem
283(4)
E BRST Quantization of SU (3) Yang-Mills Theory in α-gauges
287(4)
Bibliography 291(10)
Index 301