Atjaunināt sīkdatņu piekrišanu

Classical Recursion Theory, Volume II, Volume 143 [Hardback]

(University of Turin, Italy)
  • Formāts: Hardback, 966 pages, height x width: 241x159 mm, weight: 1520 g, bibliography, indices
  • Sērija : Studies in Logic and the Foundations of Mathematics
  • Izdošanas datums: 07-Sep-1999
  • Izdevniecība: North-Holland
  • ISBN-10: 044450205X
  • ISBN-13: 9780444502056
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 174,36 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 966 pages, height x width: 241x159 mm, weight: 1520 g, bibliography, indices
  • Sērija : Studies in Logic and the Foundations of Mathematics
  • Izdošanas datums: 07-Sep-1999
  • Izdevniecība: North-Holland
  • ISBN-10: 044450205X
  • ISBN-13: 9780444502056
Citas grāmatas par šo tēmu:
Volume II of Classical Recursion Theory describes the universe from a local (bottom-up
or synthetical) point of view, and covers the whole spectrum, from the
recursive to the arithmetical sets.


The first half of the book provides a detailed picture of the computable
sets from the perspective of Theoretical Computer Science. Besides giving a
detailed description of the theories of abstract Complexity Theory and of Inductive Inference, it contributes a uniform picture of the most basic complexity
classes, ranging from small time and space bounds to the elementary functions,
with a particular attention to polynomial time and space computability. It also
deals with primitive recursive functions and larger classes, which are of
interest to the proof theorist.


The second half of the book starts with the classical theory of recursively
enumerable sets and degrees, which constitutes the core of Recursion or
Computability Theory. Unlike other texts, usually confined to the Turing
degrees, the book covers a variety of other strong reducibilities, studying
both their individual structures and their mutual relationships. The last
chapters extend the theory to limit sets and arithmetical sets. The volume
ends with the first textbook treatment of the enumeration degrees, which
admit a number of applications from algebra to the Lambda Calculus.


The book is a valuable source of information for anyone interested in
Complexity and Computability Theory. The student will appreciate the detailed
but informal account of a wide variety of basic topics, while the specialist
will find a wealth of material sketched in exercises and asides. A massive
bibliography of more than a thousand titles completes the treatment on the
historical side.

Recenzijas

"The scope of the material is amazing. For instance, I can think of no other book with a treatment of w-REA sets inductive reference, and models of lambda calculus! This is especially gratifying in a world of continuing mathematical fragmentation." --Mathematical Reviews

Preface vii
Introduction 1(1)
What is in the Book
1(2)
How to Use the Book
3(2)
Notation and Conventions
5(4)
Theories of Recursive Functions
9(136)
Measures of Complexity
10(16)
Static complexity measures *
11(6)
Shortening proofs by adding axioms *
17(2)
Definition of a dynamic complexity measure
19(4)
First properties of dynamic complexity measures
23(3)
Speed of Computations
26(21)
Upper and lower bounds of the complexities of a function
26(6)
The Compression Theorem *
32(2)
Functions with best complexity
34(4)
The Speed-Up Theorem
38(9)
Complexity Classes
47(20)
Hierarchies for the recursive functions: successor levels *
50(5)
Hierarchies for the recursive functions: limit levels
55(4)
Hierarchies for the recursive functions: exhaustiveness *
59(2)
Names for complexity classes *
61(6)
Time and Space Measures
67(29)
One-tape Turing machines
67(3)
Other Turing machine models *
70(6)
Linear Speed-Up
76(4)
Hierarchy theorems
80(4)
Space versus time
84(2)
Nondeterministic Turing machines
86(9)
Alternating Turing machines *
95(1)
Inductive Inference
96(49)
Historical background *
98(3)
Identification by next value
101(3)
Identification by consistent explanation
104(7)
Identification by reliable explanation
111(5)
Identification by explanation
116(10)
Identification by explanation with finite errors
126(5)
Behaviorally correct (consistent) identification
131(7)
Behaviorally correct identification with finite errors
138(3)
The world of inference classes *
141(1)
Degrees of inferability *
141(4)
Hierarchies of Recursive Functions
145(212)
Small Time and Space Bounds *
147(16)
Real time
147(3)
Constant space
150(10)
Logarithmic space
160(3)
Deterministic Polynomial Time
163(34)
Polynomial time computable functions
163(1)
Closure properties
164(6)
Alternative characterizations
170(7)
Rate of growth
177(1)
Feasibly computable functions *
178(3)
The class P *
181(3)
Logarithmic space again and beyond *
184(3)
A look inside P *
187(1)
Polynomial time-degrees *
188(9)
Nondeterministic Polynomial Time *
197(26)
The class NP
198(1)
Deterministic polynomial time again *
198(1)
NP sets as analogues of r.e. sets: successes
199(9)
NP sets as analogues of r.e. sets: failures *
208(5)
Relativizations
213(9)
Polynomial time degrees again *
222(1)
The Polynomial Time Hierarchy *
223(12)
Truth in Bounded Quantifier Arithmetic
224(1)
Types of bounded quantifiers *
225(1)
The Polynomial Time Hierarchy
226(1)
Second-Order Logic on finite domains *
227(1)
The levels of the Polynomial Time Hierarchy
228(3)
Relativizations
231(4)
Polynomial Space *
235(14)
Linear space *
235(2)
The class PSPACE
237(3)
Polynomial time again *
240(2)
The Polynomial Time Hierarchy again
242(2)
Relativizations
244(4)
A look inside PSPACE *
248(1)
Exponential Time and Space
249(15)
Exponential time
250(5)
Beyond exponential time *
255(4)
Exponential space
259(2)
Superexponential bounds *
261(3)
Elementary Functions
264(22)
Elementary functions
264(1)
Closure properties
265(4)
Alternative characterizations
269(3)
Computation time and space
272(3)
Rate of growth
275(3)
Hierarchies
278(1)
The diagonal function *
279(5)
Relativizations
284(2)
Primitive Recursive Functions
286(28)
Primitive recursive functions
286(1)
Closure properties
287(8)
Alternative characterizations
295(2)
Computation time and space
297(1)
Rate of growth
298(3)
Hierarchies
301(7)
The diagonal function *
308(6)
ε0-Recursive Functions
314(43)
Multiple recursive functions *
315(1)
Ordinal recursion
316(2)
ε0-recursive functions
318(1)
Closure properties
319(3)
Alternative characterizations
322(2)
Functions provably total in Peano Arithmetic *
324(2)
Rate of growth
326(12)
Hierarchies
338(4)
The diagonal function *
342(13)
A natural stopping point *
355(2)
Recursively Enumerable Sets
357(98)
Global Properties of Recursive Sets
358(10)
Characterizations of the lattice of recursive sets
358(3)
The complexity of the theory of recursive sets
361(1)
Homogeneity
361(1)
Automorphisms
362(1)
Absolute definability
363(1)
Ultrafilters and models of fragments of Arithmetic *
364(4)
Local Properties of R.E. Sets
368(33)
Splitting theorems
368(6)
Hyperhypersimple sets
374(2)
R-maximal sets
376(3)
Maximal sets
379(6)
Sets without maximal supersets
385(8)
The world of simple sets *
393(8)
Global Properties of R.E. Sets
401(23)
The complexity of the theory of r.e. sets *
401(2)
Absolute definability
403(8)
Homogeneity
411(3)
Automorphisms
414(8)
Orbits *
422(1)
Definable and invariant classes of r.e. degrees *
423(1)
Complexity of R.E. Sets
424(23)
Nonspeedable sets
424(7)
Effectively speedable sets
431(4)
Existence theorems
435(3)
Complexity sequences *
438(9)
Inductive Inference of R.E. Sets *
447(8)
Identification by explanation of sets
447(5)
Identification by explanation of partial functions
452(3)
Recursively Enumerable Degrees
455(186)
The Finite Injury Priority Method
456(11)
Motivation
456(3)
Embeddability results
459(5)
Sacks agreement method
464(3)
A tactical variation *
467(1)
Effective Baire Category *
467(6)
Categorical formulation of finite injury arguments
468(2)
The permitting method
470(1)
Degrees r.e. in smaller degrees *
471(2)
The Infinite Injury Priority Method
473(14)
Thick subsets
473(1)
the Injury Lemma
474(2)
The Hat Trick
476(2)
The Window Lemma
478(2)
The Gate Opening Lemma *
480(2)
The Thickness Lemma
482(3)
Formal systems and r.e. sets *
485(2)
The Priority Method
487(24)
Historical remarks *
487(1)
The Tree Method
488(8)
Admissibility
496(5)
Bounded Arithmetic *
501(4)
Avoiding the priority method
505(4)
A review of solutions to Post's Problem *
509(2)
Many-One Degrees
511(27)
Incomparable degrees
511(2)
Upward density
513(1)
Greatest lower bounds
514(4)
Least upper bounds
518(1)
Connections between structure and degrees *
519(7)
Minimal degrees
526(4)
Initial segments
530(4)
Global properties
534(4)
Turing Degrees
538(44)
Incomparable degrees
539(2)
Density
541(2)
Greatest lower bounds
543(8)
Least upper bounds
551(8)
Lattice embeddings *
559(6)
Definability from parameters
565(7)
The complexity of the theory of r.e. degrees
572(6)
Absolute definability *
578(1)
Homogeneity *
579(1)
Automorphisms *
580(2)
Comparison of Degree Theories *
582(21)
One-one degrees
582(3)
Bounded truth-table degrees
585(8)
Truth-table degrees
593(8)
Elementary inequivalences
601(2)
Structure Inside Degrees
603(15)
Inside many-one degrees
603(2)
Inside truth-table degrees
605(6)
Inside weak truth-table degrees
611(1)
Inside Turing degrees
612(6)
Index Sets *
618(23)
Complexity of index sets
619(1)
Specific index sets
620(12)
Applications of index sets to degrees
632(2)
Global structure
634(7)
Limit Sets
641(96)
Jump Classes
641(21)
Domination properties
641(5)
Jump classes
646(4)
Hops
650(6)
Jump inversion below O'
656(4)
Generalized jump classes *
660(2)
1-Generic Degrees
662(14)
Full approximation arguments
664(3)
Permitting below r.e. degrees *
667(2)
Permitting below GL2 degrees *
669(2)
Permitting below 1-generic degrees below O' *
671(5)
Structure Theory
676(19)
The Diamond Theorem
676(3)
Incomparable degrees
679(4)
The Capping Theorem
683(4)
The Cupping Theorem
687(2)
The Complementation Theorem
689(1)
Exact pairs and ideals
690(5)
Minimal Degrees
695(13)
Methodology *
695(3)
Minimal degrees below O'
698(4)
Full approximation arguments *
702(3)
Permitting below r.e. degrees *
705(3)
The initial segments of the degrees below O' *
708(1)
Global Properties
708(21)
Definability from parameters
708(6)
The complexity of the theory of degrees below O'
714(4)
Absolute definability *
718(1)
Homogeneity *
719(1)
Automorphisms *
720(2)
Subclasses of degrees below O' *
722(4)
Definability of O' in the degrees *
726(3)
Many-One Degrees *
729(8)
Partial many-one reducibility
729(3)
The mini-jump operator
732(2)
Δ02 many-one degrees
734(3)
Arithmetical Sets
737(44)
Forcing in Arithmetic
737(16)
Definition of forcing
738(3)
Generic sets
741(3)
Genericity without forcing *
744(3)
An alternative approach to forcing *
747(1)
History of the notion of forcing *
747(1)
Product forcing *
748(3)
Local forcing on trees
751(2)
Applications of Forcing
753(16)
Turing degrees
753(2)
Arithmetical reducibilities *
755(3)
Arithmetical definability *
758(2)
Implicit arithmetical definability *
760(5)
ω-Hops
765(4)
Turing Degrees of Arithmetical Sets
769(12)
Local and global properties
769(4)
Cones of minimal covers
773(3)
Definability of the Turing degrees of arithmetical sets
776(5)
Arithmetical Degrees
781(46)
The Theory of Arithmetical Degrees
781(13)
The finite extension method
782(2)
The tree method
784(3)
Arithmetical jump
787(1)
Global properties
787(4)
Arithmetical degrees below O'a
791(3)
An Analogue of R.E. Sets
794(4)
Basic properties
794(2)
Representation of infinite hops
796(1)
The complexity of ω-r.e.a. sets
797(1)
An Analogue of Post's Problem
798(13)
A first approximation to the construction
800(4)
The real construction
804(2)
The basic module of the construction
806(3)
The ingredients of the construction
809(1)
An analogue of the Friedberg-Muchnik Theorem
809(2)
An Analogue of the Jump Classes
811(6)
The main result
811(4)
Jump classes
815(1)
Jump inversion
816(1)
Comparison with the R.E. Degrees
817(10)
Minimal pairs
817(7)
The Diamond Theorem
824(3)
Enumeration Degrees
827(1)
Enumeration Degrees
827(1)
Total degrees
829(4)
The Theory of Enumeration Degrees
833(1)
Minimal pairs
834(2)
Minimal covers
836(6)
Global properties
842(5)
Enumeration Degrees below O'e
847(2)
Density
849(2)
Greatest lower bounds
851(2)
Least upper bounds
853(1)
Lattice embeddings
853(3)
Global properties
856(1)
A Model of the Lambda Calculus *
857(6)
Bibliography
863(60)
Notation Index
923(6)
Subject Index
929