Preface |
|
vii | |
Introduction |
|
1 | (1) |
|
|
1 | (2) |
|
|
3 | (2) |
|
|
5 | (4) |
|
Theories of Recursive Functions |
|
|
9 | (136) |
|
|
10 | (16) |
|
Static complexity measures * |
|
|
11 | (6) |
|
Shortening proofs by adding axioms * |
|
|
17 | (2) |
|
Definition of a dynamic complexity measure |
|
|
19 | (4) |
|
First properties of dynamic complexity measures |
|
|
23 | (3) |
|
|
26 | (21) |
|
Upper and lower bounds of the complexities of a function |
|
|
26 | (6) |
|
The Compression Theorem * |
|
|
32 | (2) |
|
Functions with best complexity |
|
|
34 | (4) |
|
|
38 | (9) |
|
|
47 | (20) |
|
Hierarchies for the recursive functions: successor levels * |
|
|
50 | (5) |
|
Hierarchies for the recursive functions: limit levels |
|
|
55 | (4) |
|
Hierarchies for the recursive functions: exhaustiveness * |
|
|
59 | (2) |
|
Names for complexity classes * |
|
|
61 | (6) |
|
|
67 | (29) |
|
|
67 | (3) |
|
Other Turing machine models * |
|
|
70 | (6) |
|
|
76 | (4) |
|
|
80 | (4) |
|
|
84 | (2) |
|
Nondeterministic Turing machines |
|
|
86 | (9) |
|
Alternating Turing machines * |
|
|
95 | (1) |
|
|
96 | (49) |
|
Historical background * |
|
|
98 | (3) |
|
Identification by next value |
|
|
101 | (3) |
|
Identification by consistent explanation |
|
|
104 | (7) |
|
Identification by reliable explanation |
|
|
111 | (5) |
|
Identification by explanation |
|
|
116 | (10) |
|
Identification by explanation with finite errors |
|
|
126 | (5) |
|
Behaviorally correct (consistent) identification |
|
|
131 | (7) |
|
Behaviorally correct identification with finite errors |
|
|
138 | (3) |
|
The world of inference classes * |
|
|
141 | (1) |
|
Degrees of inferability * |
|
|
141 | (4) |
|
Hierarchies of Recursive Functions |
|
|
145 | (212) |
|
Small Time and Space Bounds * |
|
|
147 | (16) |
|
|
147 | (3) |
|
|
150 | (10) |
|
|
160 | (3) |
|
Deterministic Polynomial Time |
|
|
163 | (34) |
|
Polynomial time computable functions |
|
|
163 | (1) |
|
|
164 | (6) |
|
Alternative characterizations |
|
|
170 | (7) |
|
|
177 | (1) |
|
Feasibly computable functions * |
|
|
178 | (3) |
|
|
181 | (3) |
|
Logarithmic space again and beyond * |
|
|
184 | (3) |
|
|
187 | (1) |
|
Polynomial time-degrees * |
|
|
188 | (9) |
|
Nondeterministic Polynomial Time * |
|
|
197 | (26) |
|
|
198 | (1) |
|
Deterministic polynomial time again * |
|
|
198 | (1) |
|
NP sets as analogues of r.e. sets: successes |
|
|
199 | (9) |
|
NP sets as analogues of r.e. sets: failures * |
|
|
208 | (5) |
|
|
213 | (9) |
|
Polynomial time degrees again * |
|
|
222 | (1) |
|
The Polynomial Time Hierarchy * |
|
|
223 | (12) |
|
Truth in Bounded Quantifier Arithmetic |
|
|
224 | (1) |
|
Types of bounded quantifiers * |
|
|
225 | (1) |
|
The Polynomial Time Hierarchy |
|
|
226 | (1) |
|
Second-Order Logic on finite domains * |
|
|
227 | (1) |
|
The levels of the Polynomial Time Hierarchy |
|
|
228 | (3) |
|
|
231 | (4) |
|
|
235 | (14) |
|
|
235 | (2) |
|
|
237 | (3) |
|
Polynomial time again * |
|
|
240 | (2) |
|
The Polynomial Time Hierarchy again |
|
|
242 | (2) |
|
|
244 | (4) |
|
A look inside PSPACE * |
|
|
248 | (1) |
|
Exponential Time and Space |
|
|
249 | (15) |
|
|
250 | (5) |
|
Beyond exponential time * |
|
|
255 | (4) |
|
|
259 | (2) |
|
Superexponential bounds * |
|
|
261 | (3) |
|
|
264 | (22) |
|
|
264 | (1) |
|
|
265 | (4) |
|
Alternative characterizations |
|
|
269 | (3) |
|
Computation time and space |
|
|
272 | (3) |
|
|
275 | (3) |
|
|
278 | (1) |
|
The diagonal function * |
|
|
279 | (5) |
|
|
284 | (2) |
|
Primitive Recursive Functions |
|
|
286 | (28) |
|
Primitive recursive functions |
|
|
286 | (1) |
|
|
287 | (8) |
|
Alternative characterizations |
|
|
295 | (2) |
|
Computation time and space |
|
|
297 | (1) |
|
|
298 | (3) |
|
|
301 | (7) |
|
The diagonal function * |
|
|
308 | (6) |
|
ε0-Recursive Functions |
|
|
314 | (43) |
|
Multiple recursive functions * |
|
|
315 | (1) |
|
|
316 | (2) |
|
ε0-recursive functions |
|
|
318 | (1) |
|
|
319 | (3) |
|
Alternative characterizations |
|
|
322 | (2) |
|
Functions provably total in Peano Arithmetic * |
|
|
324 | (2) |
|
|
326 | (12) |
|
|
338 | (4) |
|
The diagonal function * |
|
|
342 | (13) |
|
A natural stopping point * |
|
|
355 | (2) |
|
Recursively Enumerable Sets |
|
|
357 | (98) |
|
Global Properties of Recursive Sets |
|
|
358 | (10) |
|
Characterizations of the lattice of recursive sets |
|
|
358 | (3) |
|
The complexity of the theory of recursive sets |
|
|
361 | (1) |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
363 | (1) |
|
Ultrafilters and models of fragments of Arithmetic * |
|
|
364 | (4) |
|
Local Properties of R.E. Sets |
|
|
368 | (33) |
|
|
368 | (6) |
|
|
374 | (2) |
|
|
376 | (3) |
|
|
379 | (6) |
|
Sets without maximal supersets |
|
|
385 | (8) |
|
The world of simple sets * |
|
|
393 | (8) |
|
Global Properties of R.E. Sets |
|
|
401 | (23) |
|
The complexity of the theory of r.e. sets * |
|
|
401 | (2) |
|
|
403 | (8) |
|
|
411 | (3) |
|
|
414 | (8) |
|
|
422 | (1) |
|
Definable and invariant classes of r.e. degrees * |
|
|
423 | (1) |
|
|
424 | (23) |
|
|
424 | (7) |
|
Effectively speedable sets |
|
|
431 | (4) |
|
|
435 | (3) |
|
Complexity sequences * |
|
|
438 | (9) |
|
Inductive Inference of R.E. Sets * |
|
|
447 | (8) |
|
Identification by explanation of sets |
|
|
447 | (5) |
|
Identification by explanation of partial functions |
|
|
452 | (3) |
|
Recursively Enumerable Degrees |
|
|
455 | (186) |
|
The Finite Injury Priority Method |
|
|
456 | (11) |
|
|
456 | (3) |
|
|
459 | (5) |
|
|
464 | (3) |
|
A tactical variation * |
|
|
467 | (1) |
|
Effective Baire Category * |
|
|
467 | (6) |
|
Categorical formulation of finite injury arguments |
|
|
468 | (2) |
|
|
470 | (1) |
|
Degrees r.e. in smaller degrees * |
|
|
471 | (2) |
|
The Infinite Injury Priority Method |
|
|
473 | (14) |
|
|
473 | (1) |
|
|
474 | (2) |
|
|
476 | (2) |
|
|
478 | (2) |
|
The Gate Opening Lemma * |
|
|
480 | (2) |
|
|
482 | (3) |
|
Formal systems and r.e. sets * |
|
|
485 | (2) |
|
|
487 | (24) |
|
|
487 | (1) |
|
|
488 | (8) |
|
|
496 | (5) |
|
|
501 | (4) |
|
Avoiding the priority method |
|
|
505 | (4) |
|
A review of solutions to Post's Problem * |
|
|
509 | (2) |
|
|
511 | (27) |
|
|
511 | (2) |
|
|
513 | (1) |
|
|
514 | (4) |
|
|
518 | (1) |
|
Connections between structure and degrees * |
|
|
519 | (7) |
|
|
526 | (4) |
|
|
530 | (4) |
|
|
534 | (4) |
|
|
538 | (44) |
|
|
539 | (2) |
|
|
541 | (2) |
|
|
543 | (8) |
|
|
551 | (8) |
|
|
559 | (6) |
|
Definability from parameters |
|
|
565 | (7) |
|
The complexity of the theory of r.e. degrees |
|
|
572 | (6) |
|
Absolute definability * |
|
|
578 | (1) |
|
|
579 | (1) |
|
|
580 | (2) |
|
Comparison of Degree Theories * |
|
|
582 | (21) |
|
|
582 | (3) |
|
Bounded truth-table degrees |
|
|
585 | (8) |
|
|
593 | (8) |
|
Elementary inequivalences |
|
|
601 | (2) |
|
|
603 | (15) |
|
|
603 | (2) |
|
Inside truth-table degrees |
|
|
605 | (6) |
|
Inside weak truth-table degrees |
|
|
611 | (1) |
|
|
612 | (6) |
|
|
618 | (23) |
|
|
619 | (1) |
|
|
620 | (12) |
|
Applications of index sets to degrees |
|
|
632 | (2) |
|
|
634 | (7) |
|
|
641 | (96) |
|
|
641 | (21) |
|
|
641 | (5) |
|
|
646 | (4) |
|
|
650 | (6) |
|
|
656 | (4) |
|
Generalized jump classes * |
|
|
660 | (2) |
|
|
662 | (14) |
|
Full approximation arguments |
|
|
664 | (3) |
|
Permitting below r.e. degrees * |
|
|
667 | (2) |
|
Permitting below GL2 degrees * |
|
|
669 | (2) |
|
Permitting below 1-generic degrees below O' * |
|
|
671 | (5) |
|
|
676 | (19) |
|
|
676 | (3) |
|
|
679 | (4) |
|
|
683 | (4) |
|
|
687 | (2) |
|
The Complementation Theorem |
|
|
689 | (1) |
|
|
690 | (5) |
|
|
695 | (13) |
|
|
695 | (3) |
|
|
698 | (4) |
|
Full approximation arguments * |
|
|
702 | (3) |
|
Permitting below r.e. degrees * |
|
|
705 | (3) |
|
The initial segments of the degrees below O' * |
|
|
708 | (1) |
|
|
708 | (21) |
|
Definability from parameters |
|
|
708 | (6) |
|
The complexity of the theory of degrees below O' |
|
|
714 | (4) |
|
Absolute definability * |
|
|
718 | (1) |
|
|
719 | (1) |
|
|
720 | (2) |
|
Subclasses of degrees below O' * |
|
|
722 | (4) |
|
Definability of O' in the degrees * |
|
|
726 | (3) |
|
|
729 | (8) |
|
Partial many-one reducibility |
|
|
729 | (3) |
|
|
732 | (2) |
|
|
734 | (3) |
|
|
737 | (44) |
|
|
737 | (16) |
|
|
738 | (3) |
|
|
741 | (3) |
|
Genericity without forcing * |
|
|
744 | (3) |
|
An alternative approach to forcing * |
|
|
747 | (1) |
|
History of the notion of forcing * |
|
|
747 | (1) |
|
|
748 | (3) |
|
|
751 | (2) |
|
|
753 | (16) |
|
|
753 | (2) |
|
Arithmetical reducibilities * |
|
|
755 | (3) |
|
Arithmetical definability * |
|
|
758 | (2) |
|
Implicit arithmetical definability * |
|
|
760 | (5) |
|
|
765 | (4) |
|
Turing Degrees of Arithmetical Sets |
|
|
769 | (12) |
|
Local and global properties |
|
|
769 | (4) |
|
|
773 | (3) |
|
Definability of the Turing degrees of arithmetical sets |
|
|
776 | (5) |
|
|
781 | (46) |
|
The Theory of Arithmetical Degrees |
|
|
781 | (13) |
|
The finite extension method |
|
|
782 | (2) |
|
|
784 | (3) |
|
|
787 | (1) |
|
|
787 | (4) |
|
Arithmetical degrees below O'a |
|
|
791 | (3) |
|
|
794 | (4) |
|
|
794 | (2) |
|
Representation of infinite hops |
|
|
796 | (1) |
|
The complexity of ω-r.e.a. sets |
|
|
797 | (1) |
|
An Analogue of Post's Problem |
|
|
798 | (13) |
|
A first approximation to the construction |
|
|
800 | (4) |
|
|
804 | (2) |
|
The basic module of the construction |
|
|
806 | (3) |
|
The ingredients of the construction |
|
|
809 | (1) |
|
An analogue of the Friedberg-Muchnik Theorem |
|
|
809 | (2) |
|
An Analogue of the Jump Classes |
|
|
811 | (6) |
|
|
811 | (4) |
|
|
815 | (1) |
|
|
816 | (1) |
|
Comparison with the R.E. Degrees |
|
|
817 | (10) |
|
|
817 | (7) |
|
|
824 | (3) |
|
|
827 | (1) |
|
|
827 | (1) |
|
|
829 | (4) |
|
The Theory of Enumeration Degrees |
|
|
833 | (1) |
|
|
834 | (2) |
|
|
836 | (6) |
|
|
842 | (5) |
|
Enumeration Degrees below O'e |
|
|
847 | (2) |
|
|
849 | (2) |
|
|
851 | (2) |
|
|
853 | (1) |
|
|
853 | (3) |
|
|
856 | (1) |
|
A Model of the Lambda Calculus * |
|
|
857 | (6) |
|
|
863 | (60) |
|
|
923 | (6) |
|
|
929 | |