Atjaunināt sīkdatņu piekrišanu

E-grāmata: Classification, (Big) Data Analysis and Statistical Learning

Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 118,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This edited volume focuses on the latest developments in classification, statistical learning, data analysis and related areas of data science, including statistical analysis of large datasets, big data analytics, time series clustering, integration of data from different sources, as well as social networks. It covers both methodological aspects as well as applications to a wide range of areas including economics, marketing, education, social sciences, medicine, environmental sciences and pharmaceutical industry. In addition, the book’s contributions describe basic features of the software behind the data analysis results, and include links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field. The peer-reviewed contributions were presented at the 10th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of t

he Italian Statistical Society, held in Santa Margherita di Pula (Cagliari), Italy, October 8 - 10, 2015.

Part I: Big Data
From Big Data to Information: Statistical Issues Through a Case Study
3(10)
Serena Signorelli
Silvia Biffignandi
Enhancing Big Data Exploration with Faceted Browsing
13(10)
Sonia Bergamaschi
Giovanni Simonini
Song Zhu
Big Data Meet Pharmaceutical Industry: An Application on Social Media Data
23(8)
Caterina Liberati
Paolo Mariani
Electre Tri Machine Learning Approach to the Record Linkage
31(12)
Valentina Minnetti
Renato De Leone
Part II: Social Networks
Finite Sample Behavior of MLE in Network Autocorrelation Models
43(8)
Michele La Rocca
Giovanni C. Porzio
Maria Prosperina Vitale
Patrick Doreian
Network Analysis Methods for Classification of Roles
51(8)
Simona Gozzo
Venera Tomaselli
MCA-Based Community Detection
59(10)
Carlo Drago
Part III: Exploratory Data Analysis
Rank Properties for Centred Three-Way Arrays
69(8)
Casper J. Albers
John C. Gower
Henk A.L. Kiers
Principal Component Analysis of Complex Data and Application to Climatology
77(10)
Sergio Camiz
Silvia Creta
Motivations and Expectations of Students' Mobility Abroad: A Mapping Technique
87(10)
Valeria Caviezel
Anna Maria Falzoni
Sebastiano Vitali
Testing Circular Antipodal Symmetry Through Data Depths
97(10)
Giuseppe Pandolfo
Giovanni Casale
Giovanni C. Porzio
Part IV: Statistical Modeling
Multivariate Stochastic Downscaling for Semicontinuous Data
107(10)
Lucia Paci
Carlo Trivisano
Daniela Cocchi
Exploring Italian Students' Performances in the SNV Test: A Quantile Regression Perspective
117(10)
Antonella Costanzo
Domenico Vistocco
Estimating the Effect of Prenatal Care on Birth Outcomes
127(10)
Emiliano Sironi
Massimo Cannas
Francesco Mola
Part V: Clustering and Classification
Clustering Upper Level Units in Multilevel Models for Ordinal Data
137(8)
Leonardo Grilli
Agnese Panzera
Carla Rampichini
Clustering Macroseismic Fields by Statistical Data Depth Functions
145(10)
Claudio Agostinelli
Renata Rotondi
Elisa Varini
Comparison of Cluster Analysis Approaches for Binary Data
155(8)
Giulia Contu
Luca Frigau
Classification Models as Tools of Bankruptcy Prediction-Polish Experience
163(10)
Jozef Pociecha
Barbara Pawelek
Mateusz Baryla
Sabina Augustyn
Quality of Classification Approaches for the Quantitative Analysis of International Conflict
173(10)
Adalbert F.X. Wilhelm
Part VI: Time Series and Spatial Data
P-Splines Based Clustering as a General Framework: Some Applications Using Different Clustering Algorithms
183(8)
Carmela Iorio
Gianluca Frasso
Antonio D'Ambrosio
Roberta Siciliano
Comparing Multistep Ahead Forecasting Functions for Time Series Clustering
191(10)
Marcella Corduas
Giancarlo Ragozini
Comparing Spatial and Spatio-temporal FPCA to Impute Large Continuous Gaps in Space
201(10)
Mariantonietta Ruggieri
Antonella Plaia
Francesca Di Salvo
Part VII: Finance and Economics
A Graphical Tool for Copula Selection Based on Tail Dependence
211(8)
Roberta Pappada
Fabrizio Durante
Nicola Torelli
Bayesian Networks for Financial Market Signals Detection
219(8)
Alessandro Greppi
Maria E. De Giuli
Claudia Tarantola
Dennis M. Montagna
A Multilevel Heckman Model to Investigate Financial Assets Among Older People in Europe
227(8)
Omar Paccagnella
Chiara Dal Bianco
Bifurcation and Sunspots in Continuous Time Optimal Model with Externalities
235
Beatrice Venturi
Alessandro Pirisinu
Erratum to: Big Data Meet Pharmaceutical Industry: An Application on Social Media Data Learning
E1
Caterina Liberati
Paolo Mariani
Francesco Mola is full professor of Statistics at the Department of Business and Economics at the University of Cagliari. He received his Ph.D in Computational Statistics and Data Analysis from the University of Naples Federico II. His research interests are in the field of multivariate data analysis and statistical learning, particularly data science and computational statistics. He has published more than sixty papers in international journals, encyclopedias, conference proceedings, and edited books.





 





Claudio Conversano is associate professor of Statistics at the Department of Business and Economics at the University of Cagliari. He received his Ph.D in Computational Statistics and Data Analysis from the University of Naples Federico II. His research interests include nonparametric statistics, statistical learning and computational finance. He has published more than forty papers in international journals, encyclopedias, conference proceedings, and edited books.









 





Maurizio Vichi is full professor of Statistics and head of the Department of Statistical Sciences at the Sapienza University of Rome. He is president of the Federation of European National Statistical Societies (FENStatS), former president of the Italian Statistical Society, and of the International Federation of Classification Societies (IFCS). He is coordinating editor of the journal Advances in Data Analysis and Classification, editor of the international book series Classification, Data Analysis and Knowledge Organization, and the series Studies in Theoretical and Applied Statistics, published by Springer. He is a member of ESAC