Atjaunināt sīkdatņu piekrišanu

Climate Change and Terrestrial Ecosystem Modeling [Mīkstie vāki]

(National Center for Atmospheric Research, Boulder, Colorado)
  • Formāts: Paperback / softback, 456 pages, height x width x depth: 254x204x20 mm, weight: 1110 g, 52 Tables, black and white; 63 Halftones, black and white; 153 Line drawings, black and white
  • Izdošanas datums: 21-Feb-2019
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1107619076
  • ISBN-13: 9781107619074
  • Mīkstie vāki
  • Cena: 72,92 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 456 pages, height x width x depth: 254x204x20 mm, weight: 1110 g, 52 Tables, black and white; 63 Halftones, black and white; 153 Line drawings, black and white
  • Izdošanas datums: 21-Feb-2019
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1107619076
  • ISBN-13: 9781107619074
Climate models have evolved into Earth system models with representation of the physics, chemistry, and biology of terrestrial ecosystems. This companion book to Gordon Bonan's Ecological Climatology: Concepts and Applications, Third Edition, builds on the concepts introduced there, and provides the mathematical foundation upon which to develop and understand ecosystem models and their relevance for these Earth system models. The book bridges the disciplinary gap among land surface models developed by atmospheric scientists; biogeochemical models, dynamic global vegetation models, and ecosystem demography models developed by ecologists; and ecohydrology models developed by hydrologists. Review questions, supplemental code, and modeling projects are provided, to aid with understanding how the equations are used. The book is an invaluable guide to climate change and terrestrial ecosystem modeling for graduate students and researchers in climate change, climatology, ecology, hydrology, biogeochemistry, meteorology, environmental science, mathematical modeling, and environmental biophysics.

Using theory and practice, this text covers the fundamentals of environmental biophysics, biogeochemical cycles, and vegetation dynamics. It bridges the disciplinary gap among the different ecosystem models developed by atmospheric scientists, ecologists, and hydrologists. Review questions, supplemental code, and modeling projects are provided.

Papildus informācija

Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.
Preface xiii
List of Mathematical Symbols
xv
1 Terrestrial Biosphere Models
1(24)
Chapter Overview
1(1)
1.1 Introduction
1(3)
1.2 The Ecological Ecosystem
4(4)
1.3 The Atmospheric Ecosystem
8(4)
1.4 The Hydrological Ecosystem
12(1)
1.5 One Biosphere
13(1)
1.6 Common Language
14(2)
1.7 Constructing a Terrestrial Biosphere Model
16(4)
1.8 The Goals of Modeling
20(1)
1.9 Complexity and Uncertainty
20(3)
1.10 Intent of the Book
23(2)
2 Quantitative Description of Ecosystems
25(15)
Chapter Overview
25(1)
2.1 Leaf Area Index
25(3)
2.2 Leaf Angle Distribution
28(4)
2.3 Leaf Mass per Area
32(1)
2.4 Canopy Nitrogen Profile
33(1)
2.5 Root Profile
34(2)
2.6 Ecosystem Structure
36(3)
2.7 Supplemental Programs
39(1)
3 Fundamentals of Energy and Mass Transfer
40(13)
Chapter Overview
40(1)
3.1 Heat Storage
40(1)
3.2 Radiation
41(2)
3.3 Conduction
43(1)
3.4 Molecular Diffusion
43(1)
3.5 Gas Relationships
44(2)
3.6 Atmospheric Humidity
46(2)
3.7 Diffusive Flux Equations
48(2)
3.8 Conductance and Resistance Networks
50(1)
3.9
Chapter Appendix -- Diffusive Flux Notation
51(2)
4 Mathematical Formulation of Biological Flux Rates
53(11)
Chapter Overview
53(1)
4.1 Michaelis--Menten Equation
53(1)
4.2 Arrhenius Equation
54(1)
4.3 Rate Modifiers
55(4)
4.4 First-Order, Linear Differential Equations
59(1)
4.5 Optimality Theory
60(4)
5 Soil Temperature
64(16)
Chapter Overview
64(1)
5.1 Introduction
64(1)
5.2 Transient, One-Dimensional Heat Conduction
65(1)
5.3 Numerical Implementation
66(4)
5.4 Soil Thermal Properties
70(3)
5.5 Diurnal and Annual Cycles
73(2)
5.6 Phase Change
75(3)
5.7 Supplemental Programs
78(1)
5.8 Modeling Projects
79(1)
6 Turbulent Fluxes and Scalar Profiles in the Surface Layer
80(21)
Chapter Overview
80(1)
6.1 Introduction
80(1)
6.2 Turbulent Fluxes
81(2)
6.3 Gradient--Diffusion Theory
83(1)
6.4 Logarithmic Profiles
84(1)
6.5 Monin--Obukhov Similarity Theory
85(4)
6.6 Aerodynamic Conductances
89(2)
6.7 Roughness Length
91(2)
6.8 Roughness Sublayer
93(7)
6.9 Supplemental Programs
100(1)
6.10 Modeling Projects
100(1)
7 Surface Energy Fluxes
101(14)
Chapter Overview
101(1)
7.1 Introduction
101(1)
7.2 Energy Balance
101(4)
7.3 Surface Temperature
105(5)
7.4 A Bucket Model Hydrologic Cycle
110(1)
7.5 Soil Evaporation
111(1)
7.6 Penman-Monteith Equation
112(1)
7.7
Chapter Appendix: Snowmelt
113(1)
7.8 Supplemental Programs
114(1)
7.9 Modeling Projects
114(1)
8 Soil Moisture
115(19)
Chapter Overview
115(1)
8.1 Introduction
115(1)
8.2 Measures of Soil Moisture
115(3)
8.3 Matric Potential and Hydraulic Conductivity
118(3)
8.4 Richards Equation
121(2)
8.5 Finite Difference Approximation
123(4)
8.6 Iterative Numerical Solutions
127(3)
8.7 Infiltration
130(1)
8.8 Source and Sink Terms
131(1)
8.9 Soil Heterogeneity
132(1)
8.1.0 Supplemental Programs
132(1)
8.11 Modeling Projects
133(1)
9 Hydrologic Scaling and Spatial Heterogeneity
134(18)
Chapter Overview
134(1)
9.1 Introduction
134(1)
9.2 Infiltration
134(2)
9.3 Runoff
136(10)
9.4 Evapotranspiration
146(1)
9.5 Snow Cover
147(2)
9.6 Subgrid Tiling
149(1)
9.7 Supplemental Programs
150(1)
9.8 Modeling Projects
150(2)
10 Leaf Temperature and Energy Fluxes
152(15)
Chapter Overview
152(1)
10.1 Introduction
152(1)
10.2 Leaf Energy Balance
153(4)
10.3 Leaf Temperature
157(2)
10.4 Leaf Boundary Layer
159(4)
10.5 Characteristic Leaf Dimension
163(1)
10.6 Energy Budget Examples
163(2)
10.7 Supplemental Programs
165(1)
10.8 Modeling Projects
165(2)
11 Leaf Photosynthesis
167(22)
Chapter Overview
167(1)
11.1 C3 Photosynthesis
167(5)
11.2 Parameter Values and Temperature Dependencies
172(3)
11.3 Photosynthetic Response to Environmental Factors
175(4)
11.4 Use of Vcmax in Models
179(2)
11.5 The Kull and Kruijt (1998) Model
181(2)
11.6 Temperature Acclimation
183(2)
11.7 C4 Photosynthesis
185(1)
11.8 Diffusive Limitations on CO2 Supply
186(2)
11.9 Supplemental Programs
188(1)
11.10 Modeling Projects
188(1)
12 Stomatal Conductance
189(24)
Chapter Overview
189(1)
12.1 Introduction
189(2)
12.2 Empirical Multiplicative Models
191(2)
12.3 Semiempirical Photosynthesis-Based Models
193(2)
12.4 Solution Techniques
195(4)
12.5 Stomatal Response to Environmental Factors
199(3)
12.6 Optimality Theory
202(8)
12.7 Soil Moisture Stress
210(1)
12.8
Chapter Appendix -- Cubic Equation for An
211(1)
12.9 Supplemental Programs
212(1)
12.10 Modeling Projects
212(1)
13 Plant Hydraulics
213(15)
Chapter Overview
213(1)
13.1 Introduction
213(1)
13.2 Plant Water Uptake and Leaf Water Potential
214(4)
13.3 Plant Hydraulics and Stomatal Conductance
218(1)
13.4 The Soil--Plant--Atmosphere (SPA) Model
219(2)
13.5 Soil-to-Root Conductance
221(3)
13.6 Stem Conductivity
224(1)
13.7 Multi-Node Models
225(1)
13.8 Supplemental Programs
226(1)
13.9 Modeling Projects
227(1)
14 Radiative Transfer
228(32)
Chapter Overview
228(1)
14.1 Introduction
228(1)
14.2 Leaf Optical Properties
229(1)
14.3 Light Transmission without Scattering
230(5)
14.4 Direct Beam Extinction Coefficient
235(4)
14.5 Diffuse Transmittance
239(2)
14.6 The Norman (1979) Model
241(5)
14.7 The Goudriaan and van Laar (1994) Model
246(4)
14.8 The Two-Stream Approximation
250(5)
14.9 Surface Albedo
255(1)
14.10 Longwave Radiation
255(4)
14.11 Supplemental Programs
259(1)
14.12 Modeling Projects
259(1)
15 Plant Canopies
260(20)
Chapter Overview
260(1)
15.1 Introduction
260(1)
15.2 Big-Leaf Models
261(5)
15.3 Dual-Source Models
266(2)
15.4 Multilayer Models
268(7)
15.5 Canopy Hydrology
275(3)
15.6 Optimality Theory
278(1)
15.7 Modeling Projects
279(1)
16 Scalar Canopy Profiles
280(21)
Chapter Overview
280(1)
16.1 Introduction
280(2)
16.2 Wind Profile
282(4)
16.3 Scalar Continuity Equation
286(3)
16.4 Aerodynamic Conductance
289(1)
16.5 Scalar Concentration Profiles
290(2)
16.6 An Implicit Flux--Profile Solution
292(3)
16.7 Localized Near-Field Theory
295(4)
16.8
Chapter Appendix -- Terms in Table 16.1
299(1)
16.9 Supplemental Programs
299(1)
16.10 Modeling Projects
300(1)
17 Biogeochemical Models
301(21)
Chapter Overview
301(1)
17.1 Introduction
301(1)
17.2 Model Structure
302(5)
17.3 Generalized Matrix Form
307(2)
17.4 Allocation and Turnover
309(4)
17.5 Leaf Phenology
313(2)
17.6 Nitrogen Cycle
315(2)
17.7 Disturbance
317(3)
17.8 Supplemental Programs
320(1)
17.9 Modeling Projects
320(2)
18 Soil Biogeochemistry
322(22)
Chapter Overview
322(1)
18.1 Introduction
322(2)
18.2 Exponential Decay
324(1)
18.3 Rate Constants
325(3)
18.4 Litter Cohort Models
328(4)
18.5 Discrete Pool Models
332(7)
18.6 Model Frontiers
339(4)
18.7 Supplemental Programs
343(1)
18.8 Modeling Projects
343(1)
19 Vegetation Demography
344(21)
Chapter Overview
344(1)
19.1 Introduction
344(1)
19.2 Forest Gap Models
345(7)
19.3 Area-Based Dynamic Global Vegetation Models
352(5)
19.4 Cohort-Based Ecosystem Demography Models
357(7)
19.5
Chapter Appendix: LPJ Allocation
364(1)
19.6
Chapter Appendix: ED Allocation
364(1)
20 Canopy Chemistry
365(16)
Chapter Overview
365(1)
20.1 Dry Deposition
365(2)
20.2 BVOC Emissions
367(1)
20.3 Dust Emissions
368(1)
20.4 Wildfire Emissions
369(1)
20.5 Reactive Nitrogen
369(2)
20.6 Methane
371(1)
20.7 Canopy-Chemistry Models
372(1)
20.8 Stable Isotopes
373(8)
Appendices
381(10)
Table A.1 Basic and Derived Scientific Units
381(1)
Table A.2 Metric Prefixes
381(1)
Table A.3 Diffusivity at Standard Pressure and Temperature
381(1)
Table A.4 Physical Constants
382(1)
A Numerical Methods
383(8)
References 391(38)
Index 429
Gordon Bonan is senior scientist and head of the Terrestrial Sciences Section at the National Center for Atmospheric Research in Boulder, Colorado. He studies the interactions of terrestrial ecosystems with climate, using models of Earth's biosphere, atmosphere, hydrosphere, and geosphere. He is the author of Ecological Climatology: Concepts and Applications (3rd edition, Cambridge, 2015) and has published 150 peer-reviewed articles in atmospheric science, geoscience, and ecological journals on terrestrial ecosystems, climate, and their coupling. He is a Fellow of the American Geophysical Union and the American Meteorological Society and has served on advisory boards for numerous national and international organizations and as an editor for several journals.