Atjaunināt sīkdatņu piekrišanu

E-grāmata: Coarse Geometry of Topological Groups

(University of Maryland, Baltimore)
  • Formāts: PDF+DRM
  • Sērija : Cambridge Tracts in Mathematics
  • Izdošanas datums: 16-Dec-2021
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108906180
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 105,87 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Cambridge Tracts in Mathematics
  • Izdošanas datums: 16-Dec-2021
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108906180
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides a general framework for doing geometric group theory for many non-locally-compact topological transformation groups that arise in mathematical practice, including homeomorphism and diffeomorphism groups of manifolds, isometry groups of separable metric spaces and automorphism groups of countable structures. Using Roe's framework of coarse structures and spaces, the author defines a natural coarse geometric structure on all topological groups. This structure is accessible to investigation, especially in the case of Polish groups, and often has an explicit description, generalising well-known structures in familiar cases including finitely generated discrete groups, compactly generated locally compact groups and Banach spaces. In most cases, the coarse geometric structure is metrisable and may even be refined to a canonical quasimetric structure on the group. The book contains many worked examples and sufficient introductory material to be accessible to beginning graduate students. An appendix outlines several open problems in this young and rich theory.

This book provides a general framework for doing geometric group theory for non-locally-compact topological groups that arise in mathematical practice. With sufficient introductory material for beginning graduate students, it is of interest to researchers in geometric group theory, functional analysis, geometric topology and mathematical logic.

Recenzijas

'Great care is taken with exposition and proofs are spelled out in full detail. The book does not have a lot of prerequisites apart from some basic knowledge of topological groups, and it is accessible to graduate students or non-specialists interested in the subject. As it is a research monograph rather than a textbook, exercises are not included; however, it is certainly possible to teach parts of it in a topics graduate course on Polish groups or geometric group theory In view of the research presented in this monograph, now Polish groups can also be considered as geometric objects, and this new facet of the theory will undoubtedly lead to interactions with yet other branches of mathematics. The clear exposition and the numerous open questions that are discussed make the book an excellent entry point to research in the field.' Todor Tsankov, Bulletin of the American Mathematical Society

Papildus informācija

Provides a general framework for doing geometric group theory for non-locally-compact topological groups arising in mathematical practice.
Preface vii
Acknowledgements ix
1 Introduction
1(18)
1.1 Motivation
1(4)
1.2 A Word on the Terminology
5(1)
1.3 Summary of Findings
6(13)
2 Coarse Structure and Metrisability
19(49)
2.1 Coarse and Uniform Spaces
19(4)
2.2 Coarse and Uniform Structures on Groups
23(3)
2.3 Coarsely Bounded Sets
26(6)
2.4 Comparison with Other Left-Invariant Coarse Structures
32(5)
2.5 Metrisability and Monogenicity
37(6)
2.6 Bornologous Maps
43(6)
2.7 Coarsely Proper Ecarts
49(4)
2.8 Quasi-metric Spaces
53(6)
2.9 Maximal Ecarts
59(9)
3 Structure Theory
68(57)
3.1 The Roelcke Uniformity
68(10)
3.2 Examples of Polish Groups
78(5)
3.3 Rigidity of Categories
83(5)
3.4 Comparison of Left- and Right-Coarse Structures
88(4)
3.5 Coarse Geometry of Product Groups
92(12)
3.6 Groups of Finite Asymptotic Dimension
104(2)
3.7 Distorted Elements and Subgroups
106(6)
3.8 Groups with Property (PL)
112(13)
4 Sections, Cocycles and Group Extensions
125(41)
4.1 Quasi-morphisms and Bounded Cocycles
126(4)
4.2 Local Boundedness of Extensions
130(8)
4.3 Refinements of Topologies
138(3)
4.4 Group Extensions
141(4)
4.5 External Extensions
145(3)
4.6 Internal Extensions of Polish Groups
148(7)
4.7 A Further Computation for General Extensions
155(1)
4.8 Coarse Structure of Covering Maps
156(10)
5 Polish Groups of Bounded Geometry
166(78)
5.1 Gauges and Groups of Bounded Geometry
166(4)
5.2 Dynamic and Geometric Characterisations of Bounded Geometry
170(6)
5.3 Examples
176(9)
5.4 Topological Couplings
185(17)
5.5 Coarse Couplings
202(2)
5.6 Representations on Reflexive Spaces
204(3)
5.7 Compact G-Flows and Unitary Representations
207(3)
5.8 Efficiently Contractible Groups
210(10)
5.9 Entropy, Growth Rates and Metric Amenability
220(10)
5.10 Nets in Polish Groups
230(4)
5.11 Two-Ended Polish Groups
234(10)
6 Automorphism Groups of Countable Structures
244(28)
6.1 Non-Archimedean Polish Groups and Large-Scale Geometry
244(1)
6.2 Orbital Types Formulation
245(7)
6.3 Homogeneous and Atomic Models
252(7)
6.4 Orbital Independence Relations
259(10)
6.5 Computing Quasi-isometry Types of Automorphism Groups
269(3)
7 Zappa--Szep Products
272(13)
7.1 The Topological Structure
272(3)
7.2 Examples
275(2)
7.3 The Coarse Structure of Zappa--Szep Products
277(8)
Appendix Open Problems 285(4)
References 289(6)
Index 295
Christian Rosendal is Professor of Mathematics at University of Illinois at Chicago. He received a Simons Fellowship in Mathematics in 2012 and is Fellow of the American Mathematical Society.