Atjaunināt sīkdatņu piekrišanu

Coefficient of Variation and Machine Learning Applications [Mīkstie vāki]

, , (Deaprtmet of Computer Science and Engineering, NIT Andhra Pradesh, India),
  • Formāts: Paperback / softback, 148 pages, height x width: 216x138 mm, weight: 181 g, 30 Illustrations, black and white
  • Sērija : Intelligent Signal Processing and Data Analysis
  • Izdošanas datums: 30-Jun-2021
  • Izdevniecība: CRC Press
  • ISBN-10: 1032084197
  • ISBN-13: 9781032084190
  • Mīkstie vāki
  • Cena: 31,30 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 148 pages, height x width: 216x138 mm, weight: 181 g, 30 Illustrations, black and white
  • Sērija : Intelligent Signal Processing and Data Analysis
  • Izdošanas datums: 30-Jun-2021
  • Izdevniecība: CRC Press
  • ISBN-10: 1032084197
  • ISBN-13: 9781032084190

Coefficient of Variation (CV) is a unit free index indicating the consistency of the data associated with a real-world process and is simple to mold into computational paradigms. This book provides necessary exposure of computational strategies, properties of CV and extracting the metadata leading to efficient knowledge representation. It also compiles representational and classification strategies based on the CV through illustrative explanations. The potential nature of CV in the context of contemporary Machine Learning strategies and the Big Data paradigms is demonstrated through selected applications. Overall, this book explains statistical parameters and knowledge representation models.

1. Introduction to Statistical Dispersion
2. Coefficient of Variation
3. Coefficient of Variation Computational Strategies
4. Coefficient of Variation Based Image Representation
5. Coefficient of Variation based Decision Tree (CvDT)
6. Some Applications.

K. Hima Bindu, Raghava Morusupalli, Nilanjan Dey, C. Raghavendra Rao