Atjaunināt sīkdatņu piekrišanu

E-grāmata: Cognitive Mechanisms of Learning

  • Formāts: PDF+DRM
  • Izdošanas datums: 16-Jul-2020
  • Izdevniecība: ISTE Ltd and John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119750468
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 165,30 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 16-Jul-2020
  • Izdevniecība: ISTE Ltd and John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119750468
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Cognitive Mechanisms of Learning presents experimental research works on the issue of knowledge acquisition in Cognitive Psychology. These research works ? initiated by groups of researchers with academic backgrounds in Philosophy, Psychology, Linguistics and Artificial Intelligence ? explore learning mechanisms by viewing humans as information processing systems. Although the book is centered on research studies conducted in a laboratory, one chapter is dedicated to applied research studies, derived directly from the fundamental research works. Computer modeling of learning mechanisms is presented, based on the concept of cognitive architecture. Three important issues ? the methodology, the achievements and the evolution ? in the field of learning research are also examined.
Foreword ix

Acknowledgments xiii

Introduction xv

Chapter
1. Useful Concepts and Representation Formalisms 1

1.1. Useful concepts 1

1.1.1. Information 1

1.1.2. Information processing 2

1.1.3. Problem 2

1.1.4. Comprehension 4

1.1.5. Memory 6

1.2. Some formalisms used in cognitive psychology to represent knowledge
stored in the LTM 10

1.2.1. Semantic networks: a representation formalism for declarative
knowledge 11

1.2.2. A representation formalism for procedural knowledge 13

1.2.3. A representation formalism for the comprehension process 16

Chapter
2. Definition and Historical Overview 23

2.1. Definition 23

2.2. Conceptual frameworks 26

2.3. Principal concepts of problem-solving 28

2.3.1. The problem space and path concepts 29

2.3.2. The heuristic and search tree concepts 32

2.4. Formal models 35

2.4.1. Models based on rules of production 36

Chapter
3. Learning to Solve a Problem 43

3.1. Breaking down a complex problem into sub-problems 44

3.1.1. Lee, J. and Anderson, J.R. (2001) 44

3.2. The four stages of problem-solving 52

3.2.1. Anderson, Pyke and Fincham (2016) 52

3.3. The three stages of learning by problem-solving 56

3.3.1. Tenison, Fincham and Anderson (2016) 56

Chapter
4. Learning a Concept from Examples of Concepts: Induction 63

4.1. Rule-based category learning 67

4.2. The question of confirmation bias 72

4.3. The duality between rule-based concept identification and
similarity-based concept identification 75

4.4. Concluding remarks 85

Chapter
5. Implicit Learning 89

5.1. Presentation 89

5.2. What have learners learned, and are they aware of the knowledge which
they acquire? 92

5.2.1. The princeps research work 92

5.2.2. What knowledge does the subject need to acquire? 99

5.3. Fragment status and the question of abstract or concrete acquired
knowledge 102

5.3.1. The status of fragments in artificial grammar learning experiments
102

5.3.2. The nature of acquired knowledge: abstract or concrete? 104

5.4. Conclusion on implicit learning 107

5.4.1. Implicit learning and statistical learning 107

5.4.2. Individual differences 109

5.4.3. Statistical learning mechanisms 110

5.4.4. Applications of statistical learning 111

Chapter
6. The Role of Prior Knowledge in Constructing a Representation of a
Problem 113

6.1. Experimental method based on comparing group results 114

6.2. Experimental method based on multiple trials of the same problem with
vocal description of actions by the subject: individual protocol and modeling
123

6.3. Experimental method using learning transfer to study the effect of
problem presentation in the choice of prior knowledge 126

6.3.1. General hypotheses 127

6.3.2. Material used 128

6.3.3. Experimental hypotheses 131

6.3.4. The experiments 132

6.3.5. Conclusion 139

6.4. Conclusion: the role of prior knowledge in the construction of problem
representations 139

Chapter
7. Acquiring Knowledge in a Specific Domain 143

7.1. Learning through (self-)explanation 143

7.1.1. Learning to solve problems by studying examples of solutions 144

7.1.2. Acquisition of declarative knowledge concerning the human circulatory
system 147

7.1.3. Knowledge acquisition in physics 154

7.1.4. Brief conclusion 160

7.2. Problem-based learning 161

7.2.1. Results 164

7.3. Appendix: some notes on cognitive load theory 165

Chapter
8. Causal Learning 169

8.1. Historical overview 170

8.2. Conceptual framework 172

8.2.1. Temporal and spatial contiguity 172

8.2.2. Temporal priority: cause before effect 173

8.2.3. Contingency 174

8.2.4. Prior experience 175

8.3. Formalization and experimental research on adults 176

8.3.1. Probabilistic models of causal learning 177

8.3.2. Two examples of research on adults 180

8.3.3. Causal learning in adults: conclusion 193

8.4. Experimental research on children 194

8.4.1. The above/below relation 196

8.4.2. The same/different relation 198

8.4.3. Knowledge of the domain in which a problem situation is represented
200

8.4.4. Self-directed learning in children 203

8.4.5. Conclusion: causal learning in children 204

Chapter
9. Symbolic Processing System Models in Cognitive Psychology 213

9.1. Why formalize? 213

9.2. Modeling complex skill acquisition using ACT-R 214

9.3. Modeling a two-player game 219

9.4. A model of learning through multiple analogies 229

9.4.1. Knowledge acquisition: first type 230

9.4.2. Knowledge acquisition: second type 232

9.5. Robert Sieglers two models for learning arithmetic calculation 239

9.6. Links between SPS models in cognitive psychology and learning models in
AI 247

Conclusion 251

References 261

Index 285
Anh Nguyen-Xuan is a retired director of research at the French National Center for Scientific Research (CNRS). Her research works are mainly interdisciplinary (Cognitive Psychology, Artificial Intelligence, Didactics of Physics, Didactics of Mathematics) and focused on learning and cognitive development.