Atjaunināt sīkdatņu piekrišanu

Coherent X-Ray Optics [Mīkstie vāki]

(School of Physics, Monash University, Australia)
  • Formāts: Paperback / softback, 424 pages, height x width x depth: 233x166x22 mm, weight: 730 g, 91 b/w illustrations
  • Sērija : Oxford Series on Synchrotron Radiation 6
  • Izdošanas datums: 29-Aug-2013
  • Izdevniecība: Oxford University Press
  • ISBN-10: 0199673861
  • ISBN-13: 9780199673865
  • Mīkstie vāki
  • Cena: 115,84 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 424 pages, height x width x depth: 233x166x22 mm, weight: 730 g, 91 b/w illustrations
  • Sērija : Oxford Series on Synchrotron Radiation 6
  • Izdošanas datums: 29-Aug-2013
  • Izdevniecība: Oxford University Press
  • ISBN-10: 0199673861
  • ISBN-13: 9780199673865
This book gives a thorough treatment of the rapidly-expanding field of coherent X-ray optics, which has recently experienced something of a renaissance with the availability of third-generation synchrotron sources. It is the first book of its kind. The author begins with a treatment of the fundamentals of X-ray diffraction for both coherent and partially coherent radiation, together with the interactions of X-rays with matter. X-ray sources, optical elements and detectors are then discussed, with an emphasis on their role in coherent X-ray optics. Various facets of coherent X-ray imaging are then discussed, including holography, interferometry, self imaging, phase contrast and phase retrieval. Lastly, the foundations of the new field of singular X-ray optics are examined. Most topics are developed from first principles, with numerous references given to the contemporary research literature. This book will be useful to X-ray physicists and students, together with optical physicists and engineers who wish to learn more about the fascinating subject of coherent X-ray optics.

Recenzijas

... a high-quality book ... a timely topic. * John Helliwell, University of Manchester * ... excellent and timely in a rapidly growing field. * Janos Kirz, State University of New York at Stony Brook *

1 X-ray wave-fields in free space
1(63)
1.1 Vacuum wave equations for electromagnetic fields
2(3)
1.2 Spectral decomposition and the analytic signal
5(1)
1.3 Angular spectrum of plane waves
6(4)
1.4 Fresnel diffraction
10(6)
1.4.1 Operator formulation
11(1)
1.4.2 Convolution formulation
12(4)
1.5 Fraunhofer diffraction
16(2)
1.6 Kirchhoff and Rayleigh--Sommerfeld diffraction theory
18(8)
1.6.1 Kirchhoff diffraction integral
18(5)
1.6.2 Rayleigh--Sommerfeld diffraction integrals
23(3)
1.7 Partially coherent fields
26(11)
1.7.1 Random variables and random processes
26(3)
1.7.2 Intermediate states of coherence
29(1)
1.7.3 Spatial coherence
30(6)
1.7.4 Temporal coherence
36(1)
1.8 The mutual coherence function
37(9)
1.9 Propagation of two-point correlation functions
46(13)
1.9.1 Vacuum wave equations
47(3)
1.9.2 Operator formulation
50(3)
1.9.3 Green function formulation
53(5)
1.9.4 Van Cittert--Zernike theorem
58(1)
1.10 Higher-order correlation functions
59(1)
1.11 Summary
60(4)
2 X-ray interactions with matter
64(72)
2.1 Wave equations in the presence of scatterers
65(6)
2.2 The projection approximation
71(6)
2.3 Point scatterers and the outgoing Green function
77(6)
2.3.1 First method for obtaining Green function
79(1)
2.3.2 Second method for obtaining Green function
80(3)
2.4 Integral-equation formulation of scattering
83(2)
2.5 First Born approximation for kinematical scattering
85(12)
2.5.1 Fraunhofer and first Born approximation
86(3)
2.5.2 Angular spectrum and first Born approximation
89(1)
2.5.3 The Ewald sphere
90(7)
2.6 Born series and dynamical scattering
97(2)
2.7 Multislice approximation
99(2)
2.8 Eikonal approximation and geometrical optics
101(7)
2.9 Scattering, refractive index, and electron density
108(7)
2.10 Inelastic scattering and absorption
115(7)
2.10.1 Compton scattering
115(4)
2.10.2 Photoelectric absorption and fluorescence
119(3)
2.11 Information content of scattered fields
122(8)
2.11.1 Scattered monochromatic fields
122(5)
2.11.2 Scattered polychromatic fields
127(3)
2.12 Summary
130(6)
3 X-ray sources, optical elements, and detectors
136(92)
3.1 Sources
137(15)
3.1.1 Brightness and emittance
137(1)
3.1.2 Fixed-anode and rotating-anode sources
138(1)
3.1.3 Synchrotron sources
139(6)
3.1.4 Free-electron lasers
145(4)
3.1.5 Energy-recovering linear accelerators
149(2)
3.1.6 Soft X-ray lasers
151(1)
3.2 Diffractive optical elements
152(34)
3.2.1 Diffraction gratings
152(8)
3.2.2 Fresnel zone plates
160(9)
3.2.3 Analyser crystals
169(7)
3.2.4 Crystal monochromators
176(2)
3.2.5 Crystal beam-splitters and interferometers
178(5)
3.2.6 Bragg--Fresnel crystal optics
183(2)
3.2.7 Free space
185(1)
3.3 Reflective optical elements
186(9)
3.3.1 X-ray reflection from surfaces
186(5)
3.3.2 Capillary optics
191(1)
3.3.3 Square-channel arrays
192(1)
3.3.4 X-ray mirrors
193(2)
3.4 Refractive optical elements
195(8)
3.4.1 Prisms
195(3)
3.4.2 Compound refractive lenses
198(5)
3.5 Virtual optical elements
203(2)
3.6 X-ray detectors
205(11)
3.6.1 Critical detector parameters
205(3)
3.6.2 Types of X-ray detector
208(4)
3.6.3 Detectors and coherence
212(4)
3.7 Summary
216(12)
4 Coherent X-ray imaging
228(113)
4.1 Operator theory of imaging
230(10)
4.1.1 Imaging using coherent fields
230(7)
4.1.2 Imaging using partially coherent fields
237(1)
4.1.3 Cascaded systems
238(2)
4.2 Self imaging
240(14)
4.2.1 Talbot effect for monochromatic fields
242(4)
4.2.2 Talbot effect for polychromatic fields
246(3)
4.2.3 Montgomery effect for monochromatic fields
249(4)
4.2.4 Montgomery effect for polychromatic fields
253(1)
4.3 Holography
254(7)
4.3.1 In-line holography
254(4)
4.3.2 Off-axis holography
258(1)
4.3.3 Fourier holography
258(3)
4.4 Phase contrast
261(28)
4.4.1 Zernike phase contrast
263(5)
4.4.2 Differential interference contrast
268(2)
4.4.3 Analyser-based phase contrast
270(8)
4.4.4 Propagation-based phase contrast
278(6)
4.4.5 Hybrid phase contrast
284(5)
4.5 Phase retrieval
289(21)
4.5.1 Gerchberg--Saxton algorithm and extensions
291(4)
4.5.2 The transport-of-intensity equation
295(6)
4.5.3 One-dimensional phase retrieval
301(9)
4.6 Interferometry
310(12)
4.6.1 Bonse--Hart interferometer
311(4)
4.6.2 Young interferometer
315(3)
4.6.3 Intensity interferometer
318(3)
4.6.4 Other means for coherence measurement
321(1)
4.7 Virtual optics for coherent X-ray imaging
322(5)
4.7.1 General remarks on virtual optics
322(2)
4.7.2 Example of virtual optics
324(3)
4.8 Summary
327(14)
5 Singular X-ray optics
341(52)
5.1 Vortices in complex scalar fields
342(1)
5.2 Nodal lines
342(4)
5.3 Nodal lines are vortex cores
346(1)
5.4 Polynomial vortex solutions to d'Alembert equation
347(4)
5.5 Vortex dynamics
351(6)
5.5.1 Vortex nucleation and annihilation
351(2)
5.5.2 Stability with respect to perturbations
353(1)
5.5.3 Vortex interaction with a background field
354(3)
5.6 Means of generating wave-field vortices
357(23)
5.6.1 Interference of three coherent plane waves
357(6)
5.6.2 Synthetic holograms
363(7)
5.6.3 Spiral phase masks
370(3)
5.6.4 Spontaneous vortex formation
373(7)
5.7 Domain walls and other topological phase defects
380(2)
5.8 Caustics and the singularity hierarchy
382(5)
5.9 Summary
387(6)
A Review of Fourier analysis
393(4)
A.1 Fourier transforms in one and two dimensions
393(1)
A.2 Convolution theorem
394(1)
A.3 Fourier shift theorem
395(1)
A.4 Fourier derivative theorem
395(1)
A.5 Sifting property of Dirac delta
396(1)
B Fresnel scaling theorem
397(4)
C Reciprocity theorem for monochromatic scalar fields
401(4)
Index 405
David M. Paganin is a Lecturer at the School of Physics, Monash University, Australia.