Atjaunināt sīkdatņu piekrišanu

E-grāmata: Cohomological Induction and Unitary Representations

  • Formāts: 968 pages
  • Sērija : Princeton Mathematical Series
  • Izdošanas datums: 02-Jun-2016
  • Izdevniecība: Princeton University Press
  • Valoda: eng
  • ISBN-13: 9781400883936
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 195,86 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 968 pages
  • Sērija : Princeton Mathematical Series
  • Izdošanas datums: 02-Jun-2016
  • Izdevniecība: Princeton University Press
  • Valoda: eng
  • ISBN-13: 9781400883936
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book offers a systematic treatment - the first in book form - of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real-analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated cohomology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis construction and leads to a large repertory of irreducible unitary representations of reductive Lie groups.
The book, which is accessible to students beyond their first year of graduate school, will interest mathematicians and physicists who want to learn about and take advantage of the algebraic side of the representation theory of Lie groups. Cohomological Induction and Unitary Representations develops the necessary background in representation theory and includes an introductory chapter of motivation, a thorough treatment of the "translation principle," and four appendices on algebra and analysis.

This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated co-homology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis construction and leads to a large repertory of irreducible unitary representations of reductive Lie groups.


The book, which is accessible to students beyond the first year of graduate school, will interest mathematicians and physicists who want to learn about and take advantage of the algebraic side of the representation theory of Lie groups.Cohomological Induction and Unitary Representations develops the necessary background in representation theory and includes an introductory chapter of motivation, a thorough treatment of the "translation principle," and four appendices on algebra and analysis.

Recenzijas

Winner of the 1996 Award for Best Professional/Scholarly Book in Mathematics, Association of American Publishers "This book is a thorough and excellent presentation of the 'cohomological' approach to the construction and classification of irreducible representations of semisimple real Lie groups."--Zentralblatt for Mathematik

Papildus informācija

For those stressing the societal implications of Earth science, this unconventional work will be an easy-even exciting-book to use. It is a joy to read. -- W. G. Ernst, Stanford University
PrefacePrerequisites by
ChapterStandard NotationIntroductionIHecke
AlgebrasIIThe Category C(g, K)IIIDuality TheoremIVReductive
PairsVCohomological InductionVISignature TheoremVIITranslation
FunctorsVIIIIrreducibility TheoremIXUnitarizability TheoremXMinimal K
TypesXITransfer TheoremXIIEpilog: Weakly Unipotent RepresentationsApp. A.
Miscellaneous AlgebraApp. B. Distributions on ManifoldsApp. C. Elementary
Homological AlgebraApp. D. Spectral SequencesNotesReferencesIndex of
NotationIndex
Anthony W. Knapp is Professor of Mathematics at the State University of New York at Stony Brook. David A. Vogan, Jr., is Professor of Mathematics at the Massachusetts Institute of Technology.