Atjaunināt sīkdatņu piekrišanu

Colliding Bodies Optimization: Extensions and Applications 2015 ed. [Hardback]

  • Formāts: Hardback, 284 pages, height x width: 235x155 mm, weight: 5679 g, 106 Illustrations, color; 56 Illustrations, black and white; XI, 284 p. 162 illus., 106 illus. in color., 1 Hardback
  • Izdošanas datums: 29-Jun-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319196588
  • ISBN-13: 9783319196589
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 284 pages, height x width: 235x155 mm, weight: 5679 g, 106 Illustrations, color; 56 Illustrations, black and white; XI, 284 p. 162 illus., 106 illus. in color., 1 Hardback
  • Izdošanas datums: 29-Jun-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319196588
  • ISBN-13: 9783319196589
Citas grāmatas par šo tēmu:

This book presents and applies a novel efficient meta-heuristic optimization algorithm called Colliding Bodies Optimization (CBO) for various optimization problems. The first part of the book introduces the concepts and methods involved, while the second is devoted to the applications. Though optimal design of structures is the main topic, two chapters on optimal analysis and applications in constructional management are also included.

This algorithm is based on one-dimensional collisions between bodies, with each agent solution being considered as an object or body with mass. After a collision of two moving bodies with specified masses and velocities, these bodies again separate, with new velocities. This collision causes the agents to move toward better positions in the search space.

The main algorithm (CBO) is internally parameter independent, setting it apart from previously developed meta-heuristics. This algorithm is enhanced (ECBO) for more efficient applications in the optimal design of structures.

The algorithms are implemented in standard computer programming languages (MATLAB and C++) and two main codes are provided for ease of use.

Part I Concepts and Methods
1 Introduction
3(8)
1.1 Optimization
3(1)
1.2 A Short Survey of Metaheuristic Algorithms
4(1)
1.3 The Formulation of Optimization Problems
5(2)
1.3.1 Objective Function
5(1)
1.3.2 Constraint Handling
6(1)
1.3.3 Parameter Tuning of Metaheuristic Algorithm
6(1)
1.4 Organization of the Present Book
7(2)
References
9(2)
2 Colliding Bodies Optimization Algorithms
11(28)
2.1 Introduction
11(1)
2.2 One-Dimensional Colliding Bodies Optimization
12(16)
2.2.1 The Physical Laws of Collision
12(2)
2.2.2 Mathematical Formulation of the CBO Algorithm
14(6)
2.2.3 The Features of the CBO Algorithm
20(6)
2.2.4 The Features of CBO
26(2)
2.3 Two-Dimensional Colliding Bodies Optimization
28(9)
2.3.1 Formulation of the Two-Dimensional Collision
29(1)
2.3.2 The 2-Dimensional Version of the CBO Algorithm
30(2)
2.3.3 Numerical Examples
32(4)
2.3.4 Discussions
36(1)
References
37(2)
3 Optimal Design of Truss Structures with Continuous Variables Using Colliding Bodies Optimization
39(48)
3.1 Introduction
39(1)
3.2 CBO for Optimal Design of Truss Structures
40(1)
3.3 Size Optimization of Truss Structures
41(25)
3.3.1 Weight Minimization of Trusses Under Static Loads
41(12)
3.3.2 Weight Minimization of Trusses Under Dynamic Frequency Constraints
53(11)
3.3.3 Discussion
64(2)
3.4 Simultaneously Size and Topology Optimization of Truss Structures
66(18)
3.4.1 Topology Optimization Method
72(1)
3.4.2 Numerical Examples of the Present Problem
73(11)
3.4.3 Discussions
84(1)
References
84(3)
4 Optimal Design of Truss Structures with Discrete Variables Using Colliding Bodies Optimization
87(20)
4.1 Introduction
87(1)
4.2 Discrete CBO Algorithm
87(2)
4.2.1 The Coefficient of Restitution (COR)
88(1)
4.3 Test Problems and Optimization Results
89(14)
4.3.1 Planar 52-Bar Truss
89(4)
4.3.2 Spatial 72-Bar Truss
93(3)
4.3.3 Spatial 582-Bar Tower
96(4)
4.3.4 Planar 47-Bar Power Line
100(3)
4.4 Discussions
103(1)
References
104(3)
Part II Extensions and Applications
5 Enhanced Versions of the CBO Algorithm
107(54)
5.1 Introduction
107(1)
5.2 Enhanced Colliding Bodies Optimization for Design Problems with Continuous and Discrete Variables
107(32)
5.2.1 Optimization Algorithms
108(4)
5.2.2 Validation of the ECBO
112(27)
5.2.3 Discussions
139(1)
5.3 A Hybrid CBO and PSO for Optimal Design of Truss Structures with Dynamic Constraints
139(20)
5.3.1 Introduction
139(1)
5.3.2 Formulation of Optimal Design of Structures
140(1)
5.3.3 CBO-PSO Based Hybrid Optimization Algorithm
141(3)
5.3.4 Numerical Examples
144(10)
5.3.5 Discussions
154(4)
5.3.6 Discussions
158(1)
References
159(2)
6 A Comparative Study of CBO and ECBO for Optimal Design of Structures
161(20)
6.1 Introduction
161(1)
6.2 Structural Optimization
162(2)
6.3 An Enhanced Colliding Bodies Optimization (ECBO)
164(3)
6.3.1 A Brief Explanation of the CBO Algorithm
164(1)
6.3.2 The ECBO Algorithm
165(2)
6.4 Design Examples
167(12)
6.4.1 The 25-bar Space Truss
168(1)
6.4.2 The 72-bar Space Truss
169(1)
6.4.3 The 3-bay 15-story Frame
170(5)
6.4.4 The 3-bay 24-story Frame
175(4)
6.5 Discussion
179(1)
References
179(2)
7 Optimum Design of Castellated Beams Utilizing Colliding Bodies Optimization
181(18)
7.1 Introduction
181(2)
7.2 Design of Castellated Beams
183(4)
7.2.1 Overall Beam Flexural Capacity
183(1)
7.2.2 Beam Shear Capacity
183(2)
7.2.3 Flexural and Buckling Strength of Web Post
185(1)
7.2.4 Vierendeel Bending of Upper and Lower Tees
185(1)
7.2.5 Deflection of Castellated Beam
186(1)
7.3 Optimum Design Problem of Castellated Beams
187(3)
7.3.1 Design of Castellated Beam with Circular Opening
188(1)
7.3.2 Design of Castellated Beam with Hexagonal Opening
189(1)
7.4 The Colliding Bodies Optimization Method
190(1)
7.4.1 The CBO Algorithm
190(1)
7.5 Design Examples
191(6)
7.5.1 Castellated Beam with 4 m Span
192(1)
7.5.2 Castellated Beam with 8 m Span
193(1)
7.5.3 Castellated Beam with 9 m Span
194(3)
7.5.4 Discussion
197(1)
References
197(2)
8 Optimal Design of Concrete Structures Using Colliding Bodies Optimization
199(38)
8.1 Introduction
199(1)
8.2 Optimum Design of Reinforced Concrete Cantilever Retaining Walls
200(13)
8.2.1 Design Variables of the Problem
201(1)
8.2.2 Objective Function
201(1)
8.2.3 DPSO Algorithm
202(1)
8.2.4 Optimum Design Process
203(2)
8.2.5 Numerical Example
205(2)
8.2.6 Results and Discussion
207(1)
8.2.7 Conclusions
207(6)
8.3 Colliding Bodies Optimization for Design of Arch Dams with Frequency Limitations
213(15)
8.3.1 Introduction
216(1)
8.3.2 Geometrical Model of Arch Dam
217(2)
8.3.3 Arch Dam Optimization Problems
219(3)
8.3.4 Numerical Examples
222(4)
8.3.5 Discussion
226(2)
8.4 Optimum Cost Design of Reinforced Concrete One-Way Ribbed Slabs
228(7)
8.4.1 Introduction
228(1)
8.4.2 Problem Statement
229(2)
8.4.3 Numerical Example
231(3)
8.4.4 Discussions
234(1)
References
235(2)
9 Domain Decomposition of Finite Element Models and Bandwidth Reduction of Sparse Matrices
237(24)
9.1 Introduction
237(1)
9.2 Optimal Domain Decomposition Using Colliding Bodies Optimization and k-Median Method
238(13)
9.2.1 Introduction
238(1)
9.2.2 Domain Decomposition Using k-Median Methodology
239(3)
9.2.3 Numerical Examples
242(6)
9.2.4 Results and Discussion
248(3)
9.3 Bandwidth Reduction Using CBO and ECBO
251(7)
9.3.1 Introduction
251(1)
9.3.2 Problem Definition
252(1)
9.3.3 Enhanced Colliding Bodies Optimization
253(1)
9.3.4 Numerical Examples
254(4)
9.3.5 Discussion
258(1)
References
258(3)
10 Resource Allocation and Time-Cost Trade-Off Using Colliding Bodies Optimization
261(18)
10.1 Introduction
261(2)
10.2 Problem Formulation
263(3)
10.2.1 Proposed MRC-DTCTP Model
263(2)
10.2.2 Mathematical Model of MRC-DTCTP
265(1)
10.3 Metaheuristic Algorithms
266(3)
10.3.1 Charged System Search
266(3)
10.3.2 Colliding Body Optimization
269(1)
10.4 Model Application and Discussion of the Results
269(6)
10.4.1 Case Study 1: Model Verification
270(1)
10.4.2 Case Study 2: Real Project
271(4)
10.5 Discussion
275(1)
References
276(3)
Appendix: CBO and ECBO Codes in Matlab and C++ 279