Atjaunināt sīkdatņu piekrišanu

E-grāmata: Combating Online Hostile Posts in Regional Languages during Emergency Situation: First International Workshop, CONSTRAINT 2021, Collocated with AAAI 2021, Virtual Event, February 8, 2021, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes selected and revised papers from the First International Workshop on Combating On line Ho st ile Posts in ?Regional Languages dur ing Emerge ncy Si tuation, CONSTRAINT 2021, Collocated with AAAI 2021, held as virtual event, in February 2021. 

The 14 full papers and 9 short papers presented were thoroughly reviewed and selected from 62 qualified submissions. The papers present  interdisciplinary approaches on multilingual social media analytics and non-conventional ways of combating online hostile posts.
Identifying Offensive Content in Social Media Posts.- Identification and
Classification of Textual Aggression in Social Media: Resource Creation and
Evaluation.- Fighting an Infodemic: COVID-19 Fake News Dataset.- Revealing
the Blackmarket Retweet Game: A Hybrid Approach.- Overview of CONSTRAINT 2021
Shared Tasks: Detecting English COVID-19 Fake News and Hindi Hostile
Posts.- LaDiff ULMFiT: A Layer Differentiated training approach for
ULMFiT.- Extracting latent information from datasets in The CONSTRAINT-2020
shared task on the hostile post detection.- Fake news and hostile posts
detection using an ensemble learning model.- Transformer-based Language Model
Fine-tuning Methods for COVID-19 Fake News Detection.- Tackling the infodemic
: Analysis using Transformer based models.- Exploring Text-transformers in
AAAI 2021 Shared Task: COVID-19 Fake News Detection in English.- g2tmn at
Constraint@AAAI2021: Exploiting CT-BERT and Ensembling Learning for COVID-19
Fake News Detection.- Model Generalization on COVID-19 Fake News
Detection.- ECOL: Early Detection of COVID Lies Using Content, Prior
Knowledge and Source Information.- Evaluating Deep Learning Approaches for
Covid19 Fake News Detection.- A Heuristic-driven Ensemble Framework for
COVID-19 Fake News Detection.- Identification of COVID-19 related Fake News
via Neural Stacking.- Fake News Detection System using XLNet model with Topic
Distributions: CONSTRAINT@AAAI2021 Shared Task.- Coarse and Fine-Grained
Hostility Detection in Hindi Posts using Fine Tuned Multilingual
Embeddings.- Hostility Detection in Hindi leveraging Pre-Trained Language
Models.- Stacked embeddings and multiple fine-tuned XLM-RoBERTa models for
Enhanced hostility identification.- Task Adaptive Pretraining of Transformers
for Hostility Detection.- Divide and Conquer: An Ensemble Approach for
Hostile Post Detection in Hindi.