Atjaunināt sīkdatņu piekrišanu

E-grāmata: Combinatorial Convexity

  • Formāts: 148 pages
  • Sērija : University Lecture Series
  • Izdošanas datums: 10-Aug-2021
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470467685
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 70,25 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 148 pages
  • Sērija : University Lecture Series
  • Izdošanas datums: 10-Aug-2021
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470467685
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is about the combinatorial properties of convex sets, families of convex sets in finite dimensional Euclidean spaces, and finite points sets related to convexity. This area is classic, with theorems of Helly, Caratheodory, and Radon that go back more than a hundred years. At the same time, it is a modern and active field of research with recent results like Tverberg's theorem, the colourful versions of Helly and Caratheodory, and the $(p, q)$ theorem of Alon and Kleitman. As the title indicates, the topic is convexity and geometry, and is close to discrete mathematics. The questions considered are frequently of a combinatorial nature, and the proofs use ideas from geometry and are often combined with graph and hypergraph theory.

The book is intended for students (graduate and undergraduate alike), but postdocs and research mathematicians will also find it useful. It can be used as a textbook with short chapters, each suitable for a one- or two-hour lecture. Not much background is needed: basic linear algebra and elements of (hyper)graph theory as well as some mathematical maturity should suffice.

Recenzijas

This is an elegant, well written, concise treatment of an attractive and active subject, written by an expert who has made important contributions to the area himself. I am sure this will be a successful textbook."" Noga Alon, Princeton University and Tel Aviv University

""I think this book is a gem."" Janos Pach, Renyi Institute of Mathematics, Budapest

Preface vii
Chapter 1 Basic concepts 1(8)
Chapter 2 Caratheodory's theorem 9(4)
Chapter 3 Radon's theorem 13(4)
Chapter 4 Topological Radon 17(4)
Chapter 5 Tverberg's theorem 21(6)
Chapter 6 General position 27(2)
Chapter 7 Helly's theorem 29(4)
Chapter 8 Applications of Helly's theorem 33(6)
Chapter 9 Fractional Helly 39(2)
Chapter 10 Colourful Caratheodory 41(4)
Chapter 11 Colourful Caratheodory again 45(4)
Chapter 12 Colourful Helly 49(4)
Chapter 13 Tverberg's theorem again 53(4)
Chapter 14 Colourful Tverberg theorem 57(4)
Chapter 15 Sarkaria and Kirchberger generalized 61(2)
Chapter 16 The Erdos-Szekeres theorem 63(4)
Chapter 17 The same type lemma 67(4)
Chapter 18 Better bound for the Erdos-Szekeres number 71(6)
Chapter 19 Covering number, planar case 77(4)
Chapter 20 The stretched grid 81(6)
Chapter 21 Covering number, general case 87(4)
Chapter 22 Upper bound on the covering number 91(4)
Chapter 23 The point selection theorem 95(4)
Chapter 24 Homogeneous selection 99(2)
Chapter 25 Missing few simplices 101(4)
Chapter 26 Weak e-nets 105(4)
Chapter 27 Lower bound on the size of weak e-nets 109(4)
Chapter 28 The (p, q) theorem 113(6)
Chapter 29 The colourful (p, q) theorem 119(4)
Chapter 30 d-intervals 123(4)
Chapter 31 Halving lines, halving planes 127(4)
Chapter 32 Convex lattice sets 131(6)
Chapter 33 Fractional Helly for convex lattice sets 137(6)
Bibliography 143(4)
Index 147
Imre Barany, Renyi Institute of Mathematics, Budapest, Hungary, and University College London, United Kingdom.