Atjaunināt sīkdatņu piekrišanu

E-grāmata: Combinatorial Set Theory: With a Gentle Introduction to Forcing

  • Formāts: EPUB+DRM
  • Sērija : Springer Monographs in Mathematics
  • Izdošanas datums: 20-Dec-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319602318
  • Formāts - EPUB+DRM
  • Cena: 165,96 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Springer Monographs in Mathematics
  • Izdošanas datums: 20-Dec-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319602318

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This introduction to modern set theory opens the way to advanced current research. Coverage includes the axiom of choice and Ramsey theory, and a detailed explanation of the sophisticated technique of forcing. Offers notes, related results and references.

This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory.

Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters.

Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.

Recenzijas

Each chapter ends with Notes that often add historical information, offer further remarks on the chapters contents . Halbheisens Combinatorial Set Theory is an excellent source for the intermediate or advanced student of set theory Because of its wealth of material, it should also serve as an excellent resource for those designing advanced courses or searching for seminar assignments for students. (J. M. Plotkin, zbMATH 06755662, 2018)

Part I Preliminary
1 The Setting
3(8)
What Is Infinitary Combinatorics?
3(1)
The Axiom of Choice
4(1)
Cardinal Characteristics
5(1)
The Forcing Technique
6(1)
Ramsey Theory
6(2)
Notes
8(1)
References
9(2)
2 First-Order Logic in a Nutshell
11(20)
Syntax: The Grammar of Symbols
11(8)
Semantics: Making Sense of the Symbols
19(1)
The Completeness Theorem
20(2)
Limits of First-Order Logic
22(2)
Notes
24(3)
References
27(4)
3 Axioms of Set Theory
31(56)
Why Axioms?
31(2)
The Axioms of Zermelo-Fraenkel Set Theory
33(15)
On the Consistency of ZF
48(2)
Models of ZF
50(3)
Cardinals and Ordinals in ZF
53(7)
Zermelo's Axiom of Choice
60(4)
Godel's Model of ZFC
64(1)
Cardinal Arithmetic in ZFC
65(7)
Notes
72(7)
References
79(8)
Part II Topics in Combinatorial Set Theory
4 Overture: Ramsey's Theorem
87(16)
The Nucleus of Ramsey Theory
87(3)
Corollaries of Ramsey's Theorem
90(2)
Generalisations of Ramsey's Theorem
92(4)
Notes
96(1)
Related Results
97(4)
References
101(2)
5 Cardinal Relations in ZF Only
103(32)
Basic Cardinal Relations
104(4)
On the Cardinals 2No and N1
108(3)
Ordinal Numbers Revisited
111(5)
More Cardinal Relations
116(13)
Notes
129(1)
Related Results
130(3)
References
133(2)
6 Forms of Choice
135(42)
Equivalent Forms of the Axiom of Choice
135(11)
Weaker Forms of the Axiom of Choice
146(16)
Notes
162(2)
Related Results
164(7)
References
171(6)
7 How to Make Two Balls from One
177(14)
Equidecomposability
177(1)
Hausdorff's Paradox
178(3)
Robinson's Decomposition
181(7)
Notes
188(1)
Related Results
188(1)
References
189(2)
8 Models of Set Theory with Atoms
191(30)
Permutation Models
191(4)
Fraenkel's Permutation Models
195(3)
Ordered Mostowski Models
198(10)
Shelah-Type Permutation Models
208(8)
Notes
216(1)
Related Results
216(2)
References
218(3)
9 Thirteen Cardinals and Their Relations
221(24)
The Cardinals ω1 and c
222(1)
The Cardinal p
222(1)
The Cardinals b and o
223(1)
The Cardinals a and r
224(2)
The Cardinals a and u
226(2)
The Cardinal i
228(4)
The Cardinals par and hom
232(2)
The Cardinal h
234(3)
Summary
237(1)
Notes
238(1)
Related Results
238(3)
References
241(4)
10 The Shattering Number Revisited
245(14)
The Ramsey Property
245(2)
The Ideal of Ramsey-Null Sets
247(1)
The Ellentuck Topology
248(4)
A Generalised Suslin Operation
252(3)
Notes
255(1)
Related Results
255(2)
References
257(2)
11 Happy Families and Their Relatives
259(34)
Happy Families
259(4)
Ramsey Ultrafilters
263(3)
P-Points and Q-Points
266(5)
Ramsey Families and P-Families
271(6)
The Rudin-Keisler Ordering of Ultrafilters Over ω
277(9)
Notes
286(1)
Related Results
287(4)
References
291(2)
12 Coda: A Dual Form of Ramsey's Theorem
293(26)
The Hales-Jewett Theorem
293(5)
Families of Partitions
298(3)
Carlson's Lemma and the Partition Ramsey Theorem
301(7)
A Weak Form of the Halpern-Lauchli Theorem
308(1)
Notes
309(1)
Related Results
310(3)
References
313(6)
Part III From Martin's Axiom to Cohen's Forcing
13 The Idea of Forcing
319(4)
14 Martin's Axiom
323(16)
Filters on Partially Ordered Sets
323(4)
Weaker Forms of MA
327(8)
Notes
335(1)
Related Results
336(1)
References
337(2)
15 The Notion of Forcing
339(30)
The Language of Forcing
339(5)
Generic Extensions
344(3)
ZFC in Generic Models
347(15)
Independence of CH: The Gentle Way
362(4)
On the Existence of Generic Filters
366(1)
Notes
367(1)
Related Results
368(1)
References
368(1)
16 Proving Unprovability
369(14)
Basic Model-Theoretical Facts
369(2)
The Reflection Principle
371(3)
Countable Transitive Models of Finite Fragments of ZFC
374(2)
Consistency and Independence Proofs: The Proper Way
376(3)
Notes
379(1)
Related Results
380(1)
References
381(2)
17 Models in Which AC Fails
383(22)
Symmetric Submodels of Generic Extensions
383(3)
Two Models in Which the Reals Cannot Be Well-Ordered
386(5)
A Model in Which Every Ultrafilter Over w Is Principal
391(1)
A Model with a Paradoxical Decomposition of the Real Line
392(3)
Simulating Permutation Models by Symmetric Models
395(5)
Notes
400(1)
Related Results
401(1)
References
402(3)
18 Combining Forcing Notions
405(26)
Products
406(3)
A Model in Which a < c
409(2)
Iterations
411(9)
A Model in Which i < c
420(3)
A Model in Which hom < c
423(4)
Notes
427(1)
Related Results
427(2)
References
429(2)
19 Models in Which p = c
431(10)
A Model in Which p = c = ω2
431(2)
On the Consistency of MA + CH
433(1)
p = c Is Preserved Under Adding a Cohen Real
434(4)
Notes
438(1)
Related Results
438(1)
References
439(2)
20 Suslin's Problem
441(16)
A Topological Characterisation of the Real Line
441(2)
Suslin Lines and Suslin Trees
443(3)
There May Be No Suslin Line
446(1)
There May Be a Suslin Line
447(6)
Notes
453(1)
Related Results
453(1)
References
454(3)
Part IV Combinatorics of Forcing Extensions
21 Properties of Forcing Extensions
457(14)
Dominating, Splitting, Bounded, and Unbounded Reals
457(2)
The Laver Property and Not Adding Cohen Reals
459(1)
Proper Forcing Notions and Preservation Theorems
460(8)
Notes
468(1)
Related Results
468(1)
References
468(3)
22 Cohen Forcing Revisited
471(14)
Properties of Cohen Forcing
471(6)
A Model in Which a < = r = cov(M)
477(2)
A Model in Which s = b < o
479(1)
Notes
480(1)
Related Results
480(2)
References
482(3)
23 Sacks Forcing
485(12)
Properties of Sacks Forcing
485(6)
A Model with Exactly c Ramsey Ultrafilters
491(3)
Notes
494(1)
Related Results
494(1)
References
495(2)
24 Silver-Like Forcing Notions
497(6)
Properties of Silver-Like Forcing
498(3)
A Model in Which d < r
501(1)
Notes
501(1)
Related Results
501(1)
References
502(1)
25 Miller Forcing
503(14)
Properties of Miller Forcing
505(7)
A Model in Which u < o
512(1)
Notes
513(1)
Related Results
513(2)
References
515(2)
26 Mathias Forcing
517(24)
Properties of Mathias Forcing
517(5)
A Model in Which p < h
522(2)
On the Existence of Ramsey Ultrafilters
524(12)
Notes
536(1)
Related Results
536(3)
References
539(2)
27 How Many Ramsey Ultrafilters Exist?
541(14)
Properties of Shelah's Product Tree Forcing
543(3)
There May Exist Exactly 27 Ramsey Ultrafilters
546(6)
Notes
552(1)
Related Results
552(1)
References
553(2)
28 Combinatorial Properties of Sets of Partitions
555(14)
A Dual Form of Mathias Forcing
555(7)
A Dual Form of Ramsey Ultrafilters
562(3)
Notes
565(1)
Related Results
565(2)
References
567(2)
29 Suite
569(12)
Prelude
569(1)
Allemande
570(2)
Courante
572(1)
Sarabande
573(1)
Gavotte I and II
574(1)
Gigue
575(1)
References
575(2)
Symbols
577(4)
Name Index 581(6)
Subject Index 587