Part I Preliminary |
|
|
|
3 | (8) |
|
What Is Infinitary Combinatorics? |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
6 | (2) |
|
|
8 | (1) |
|
|
9 | (2) |
|
2 First-Order Logic in a Nutshell |
|
|
11 | (20) |
|
Syntax: The Grammar of Symbols |
|
|
11 | (8) |
|
Semantics: Making Sense of the Symbols |
|
|
19 | (1) |
|
|
20 | (2) |
|
Limits of First-Order Logic |
|
|
22 | (2) |
|
|
24 | (3) |
|
|
27 | (4) |
|
|
31 | (56) |
|
|
31 | (2) |
|
The Axioms of Zermelo-Fraenkel Set Theory |
|
|
33 | (15) |
|
|
48 | (2) |
|
|
50 | (3) |
|
Cardinals and Ordinals in ZF |
|
|
53 | (7) |
|
Zermelo's Axiom of Choice |
|
|
60 | (4) |
|
|
64 | (1) |
|
Cardinal Arithmetic in ZFC |
|
|
65 | (7) |
|
|
72 | (7) |
|
|
79 | (8) |
Part II Topics in Combinatorial Set Theory |
|
|
4 Overture: Ramsey's Theorem |
|
|
87 | (16) |
|
The Nucleus of Ramsey Theory |
|
|
87 | (3) |
|
Corollaries of Ramsey's Theorem |
|
|
90 | (2) |
|
Generalisations of Ramsey's Theorem |
|
|
92 | (4) |
|
|
96 | (1) |
|
|
97 | (4) |
|
|
101 | (2) |
|
5 Cardinal Relations in ZF Only |
|
|
103 | (32) |
|
|
104 | (4) |
|
On the Cardinals 2No and N1 |
|
|
108 | (3) |
|
Ordinal Numbers Revisited |
|
|
111 | (5) |
|
|
116 | (13) |
|
|
129 | (1) |
|
|
130 | (3) |
|
|
133 | (2) |
|
|
135 | (42) |
|
Equivalent Forms of the Axiom of Choice |
|
|
135 | (11) |
|
Weaker Forms of the Axiom of Choice |
|
|
146 | (16) |
|
|
162 | (2) |
|
|
164 | (7) |
|
|
171 | (6) |
|
7 How to Make Two Balls from One |
|
|
177 | (14) |
|
|
177 | (1) |
|
|
178 | (3) |
|
|
181 | (7) |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
189 | (2) |
|
8 Models of Set Theory with Atoms |
|
|
191 | (30) |
|
|
191 | (4) |
|
Fraenkel's Permutation Models |
|
|
195 | (3) |
|
|
198 | (10) |
|
Shelah-Type Permutation Models |
|
|
208 | (8) |
|
|
216 | (1) |
|
|
216 | (2) |
|
|
218 | (3) |
|
9 Thirteen Cardinals and Their Relations |
|
|
221 | (24) |
|
|
222 | (1) |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
224 | (2) |
|
|
226 | (2) |
|
|
228 | (4) |
|
The Cardinals par and hom |
|
|
232 | (2) |
|
|
234 | (3) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
238 | (3) |
|
|
241 | (4) |
|
10 The Shattering Number Revisited |
|
|
245 | (14) |
|
|
245 | (2) |
|
The Ideal of Ramsey-Null Sets |
|
|
247 | (1) |
|
|
248 | (4) |
|
A Generalised Suslin Operation |
|
|
252 | (3) |
|
|
255 | (1) |
|
|
255 | (2) |
|
|
257 | (2) |
|
11 Happy Families and Their Relatives |
|
|
259 | (34) |
|
|
259 | (4) |
|
|
263 | (3) |
|
|
266 | (5) |
|
Ramsey Families and P-Families |
|
|
271 | (6) |
|
The Rudin-Keisler Ordering of Ultrafilters Over ω |
|
|
277 | (9) |
|
|
286 | (1) |
|
|
287 | (4) |
|
|
291 | (2) |
|
12 Coda: A Dual Form of Ramsey's Theorem |
|
|
293 | (26) |
|
|
293 | (5) |
|
|
298 | (3) |
|
Carlson's Lemma and the Partition Ramsey Theorem |
|
|
301 | (7) |
|
A Weak Form of the Halpern-Lauchli Theorem |
|
|
308 | (1) |
|
|
309 | (1) |
|
|
310 | (3) |
|
|
313 | (6) |
Part III From Martin's Axiom to Cohen's Forcing |
|
|
|
319 | (4) |
|
|
323 | (16) |
|
Filters on Partially Ordered Sets |
|
|
323 | (4) |
|
|
327 | (8) |
|
|
335 | (1) |
|
|
336 | (1) |
|
|
337 | (2) |
|
|
339 | (30) |
|
|
339 | (5) |
|
|
344 | (3) |
|
|
347 | (15) |
|
Independence of CH: The Gentle Way |
|
|
362 | (4) |
|
On the Existence of Generic Filters |
|
|
366 | (1) |
|
|
367 | (1) |
|
|
368 | (1) |
|
|
368 | (1) |
|
|
369 | (14) |
|
Basic Model-Theoretical Facts |
|
|
369 | (2) |
|
|
371 | (3) |
|
Countable Transitive Models of Finite Fragments of ZFC |
|
|
374 | (2) |
|
Consistency and Independence Proofs: The Proper Way |
|
|
376 | (3) |
|
|
379 | (1) |
|
|
380 | (1) |
|
|
381 | (2) |
|
17 Models in Which AC Fails |
|
|
383 | (22) |
|
Symmetric Submodels of Generic Extensions |
|
|
383 | (3) |
|
Two Models in Which the Reals Cannot Be Well-Ordered |
|
|
386 | (5) |
|
A Model in Which Every Ultrafilter Over w Is Principal |
|
|
391 | (1) |
|
A Model with a Paradoxical Decomposition of the Real Line |
|
|
392 | (3) |
|
Simulating Permutation Models by Symmetric Models |
|
|
395 | (5) |
|
|
400 | (1) |
|
|
401 | (1) |
|
|
402 | (3) |
|
18 Combining Forcing Notions |
|
|
405 | (26) |
|
|
406 | (3) |
|
|
409 | (2) |
|
|
411 | (9) |
|
|
420 | (3) |
|
|
423 | (4) |
|
|
427 | (1) |
|
|
427 | (2) |
|
|
429 | (2) |
|
|
431 | (10) |
|
A Model in Which p = c = ω2 |
|
|
431 | (2) |
|
On the Consistency of MA + CH |
|
|
433 | (1) |
|
p = c Is Preserved Under Adding a Cohen Real |
|
|
434 | (4) |
|
|
438 | (1) |
|
|
438 | (1) |
|
|
439 | (2) |
|
|
441 | (16) |
|
A Topological Characterisation of the Real Line |
|
|
441 | (2) |
|
Suslin Lines and Suslin Trees |
|
|
443 | (3) |
|
There May Be No Suslin Line |
|
|
446 | (1) |
|
There May Be a Suslin Line |
|
|
447 | (6) |
|
|
453 | (1) |
|
|
453 | (1) |
|
|
454 | (3) |
Part IV Combinatorics of Forcing Extensions |
|
|
21 Properties of Forcing Extensions |
|
|
457 | (14) |
|
Dominating, Splitting, Bounded, and Unbounded Reals |
|
|
457 | (2) |
|
The Laver Property and Not Adding Cohen Reals |
|
|
459 | (1) |
|
Proper Forcing Notions and Preservation Theorems |
|
|
460 | (8) |
|
|
468 | (1) |
|
|
468 | (1) |
|
|
468 | (3) |
|
22 Cohen Forcing Revisited |
|
|
471 | (14) |
|
Properties of Cohen Forcing |
|
|
471 | (6) |
|
A Model in Which a < = r = cov(M) |
|
|
477 | (2) |
|
A Model in Which s = b < o |
|
|
479 | (1) |
|
|
480 | (1) |
|
|
480 | (2) |
|
|
482 | (3) |
|
|
485 | (12) |
|
Properties of Sacks Forcing |
|
|
485 | (6) |
|
A Model with Exactly c Ramsey Ultrafilters |
|
|
491 | (3) |
|
|
494 | (1) |
|
|
494 | (1) |
|
|
495 | (2) |
|
24 Silver-Like Forcing Notions |
|
|
497 | (6) |
|
Properties of Silver-Like Forcing |
|
|
498 | (3) |
|
|
501 | (1) |
|
|
501 | (1) |
|
|
501 | (1) |
|
|
502 | (1) |
|
|
503 | (14) |
|
Properties of Miller Forcing |
|
|
505 | (7) |
|
|
512 | (1) |
|
|
513 | (1) |
|
|
513 | (2) |
|
|
515 | (2) |
|
|
517 | (24) |
|
Properties of Mathias Forcing |
|
|
517 | (5) |
|
|
522 | (2) |
|
On the Existence of Ramsey Ultrafilters |
|
|
524 | (12) |
|
|
536 | (1) |
|
|
536 | (3) |
|
|
539 | (2) |
|
27 How Many Ramsey Ultrafilters Exist? |
|
|
541 | (14) |
|
Properties of Shelah's Product Tree Forcing |
|
|
543 | (3) |
|
There May Exist Exactly 27 Ramsey Ultrafilters |
|
|
546 | (6) |
|
|
552 | (1) |
|
|
552 | (1) |
|
|
553 | (2) |
|
28 Combinatorial Properties of Sets of Partitions |
|
|
555 | (14) |
|
A Dual Form of Mathias Forcing |
|
|
555 | (7) |
|
A Dual Form of Ramsey Ultrafilters |
|
|
562 | (3) |
|
|
565 | (1) |
|
|
565 | (2) |
|
|
567 | (2) |
|
|
569 | (12) |
|
|
569 | (1) |
|
|
570 | (2) |
|
|
572 | (1) |
|
|
573 | (1) |
|
|
574 | (1) |
|
|
575 | (1) |
|
|
575 | (2) |
|
|
577 | (4) |
Name Index |
|
581 | (6) |
Subject Index |
|
587 | |