Preface |
|
vii | |
Abstract |
|
ix | |
|
|
1 | (22) |
|
1.1 Parametric Identification of Single-Element Systems |
|
|
1 | (9) |
|
1.1.1 Least Squares Approach |
|
|
1 | (8) |
|
1.1.2 Instrumental Variables Method |
|
|
9 | (1) |
|
1.2 Nonparametric Methods |
|
|
10 | (3) |
|
1.2.1 Cross-Correlation Analysis |
|
|
10 | (1) |
|
1.2.2 Kernel Regression Function Estimation |
|
|
11 | (1) |
|
1.2.3 Orthogonal Expansion |
|
|
12 | (1) |
|
|
13 | (1) |
|
1.4 Block-Oriented Systems |
|
|
14 | (9) |
|
|
14 | (2) |
|
|
16 | (2) |
|
1.4.3 Sandwich (Wiener-Hammerstein) System |
|
|
18 | (1) |
|
|
19 | (1) |
|
1.4.5 Interconnected MIMO System |
|
|
20 | (1) |
|
1.4.6 Applications in Science and Technology |
|
|
21 | (2) |
|
|
23 | (64) |
|
2.1 Finite Memory Hammerstein System |
|
|
23 | (10) |
|
|
23 | (1) |
|
2.1.2 Statement of the Problem |
|
|
24 | (1) |
|
2.1.3 Background of the Approach |
|
|
25 | (2) |
|
2.1.4 Two-Stage Parametric-Nonparametric Estimation of Nonlinearity Parameters |
|
|
27 | (2) |
|
2.1.5 Two-Stage Parametric-Nonparametric Identification of Linear Dynamics |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
31 | (2) |
|
|
33 | (1) |
|
2.2 Infinite Memory Hammerstein System |
|
|
33 | (10) |
|
|
33 | (1) |
|
2.2.2 Statement of the Problem |
|
|
34 | (2) |
|
2.2.3 Identification of ARMA Linear Dynamics by Nonparametric Instrumental Variables |
|
|
36 | (6) |
|
|
42 | (1) |
|
2.3 Hammerstein System with Hard Nonlinearity |
|
|
43 | (13) |
|
2.3.1 Parametric Prior Knowledge of the Nonlinear Characteristic |
|
|
43 | (3) |
|
2.3.2 Estimation of the Nonlinearity Parameters |
|
|
46 | (5) |
|
2.3.3 Simulation Examples |
|
|
51 | (5) |
|
2.4 Hammerstein System Excited by Correlated Process |
|
|
56 | (14) |
|
|
56 | (2) |
|
|
58 | (1) |
|
|
59 | (2) |
|
2.4.4 Statement of the Problem |
|
|
61 | (1) |
|
2.4.5 Semi-parametric Least Squares in Case of Correlated Input |
|
|
62 | (1) |
|
2.4.6 Instrumental Variables Method |
|
|
63 | (1) |
|
2.4.7 Generation of Instruments |
|
|
64 | (2) |
|
2.4.8 Various Kinds of Prior Knowledge |
|
|
66 | (2) |
|
2.4.9 Computer Experiment |
|
|
68 | (2) |
|
|
70 | (1) |
|
|
70 | (6) |
|
|
70 | (1) |
|
2.5.2 Statement of the Problem |
|
|
70 | (1) |
|
|
71 | (2) |
|
2.5.4 Nonparametric Generation of Instruments |
|
|
73 | (2) |
|
2.5.5 Computer Experiment |
|
|
75 | (1) |
|
|
76 | (1) |
|
2.6 Identification under Small Number of Data |
|
|
76 | (6) |
|
|
77 | (1) |
|
2.6.2 Statement of the Problem |
|
|
77 | (1) |
|
2.6.3 The Proposed Algorithm |
|
|
78 | (3) |
|
|
81 | (1) |
|
|
81 | (1) |
|
2.7 Semiparametric Approach |
|
|
82 | (3) |
|
2.7.1 Nonlinearity Recovering |
|
|
82 | (1) |
|
2.7.2 Identification of the Linear Dynamic Subsystem |
|
|
83 | (2) |
|
|
85 | (2) |
|
|
87 | (16) |
|
3.1 Introduction to Wiener System |
|
|
87 | (1) |
|
3.2 Nonparametric Identification Tools |
|
|
88 | (8) |
|
3.2.1 Inverse Regression Approach |
|
|
88 | (2) |
|
3.2.2 Cross-Correlation Analysis |
|
|
90 | (1) |
|
3.2.3 A Censored Sample Mean Approach |
|
|
90 | (6) |
|
3.3 Combined Parametric-Nonparametric Approach |
|
|
96 | (6) |
|
3.3.1 Kernel Method with the Correlation-Based Internal Signal Estimation (FIR) |
|
|
96 | (1) |
|
3.3.2 Identification of IIR Wiener Systems with Non-Gaussian Input |
|
|
97 | (3) |
|
3.3.3 Averaged Derivative Method |
|
|
100 | (1) |
|
|
101 | (1) |
|
|
102 | (1) |
|
4 Wiener-Hammerstein (Sandwich) System |
|
|
103 | (10) |
|
|
103 | (1) |
|
|
104 | (2) |
|
|
106 | (1) |
|
|
107 | (3) |
|
|
110 | (1) |
|
|
111 | (2) |
|
|
113 | (24) |
|
5.1 Statement of the Problem |
|
|
113 | (3) |
|
|
113 | (3) |
|
5.1.2 Comments to Assumptions |
|
|
116 | (1) |
|
5.1.3 Organization of the Chapter |
|
|
116 | (1) |
|
5.2 Least Squares and SVD Approach |
|
|
116 | (3) |
|
5.3 Instrumental Variables Approach |
|
|
119 | (1) |
|
|
120 | (1) |
|
5.5 Optimal Instrumental Variables |
|
|
120 | (8) |
|
5.6 Nonparametric Generation of Instrumental Variables |
|
|
128 | (3) |
|
5.7 The 3-Stage Identification |
|
|
131 | (1) |
|
|
132 | (4) |
|
|
132 | (1) |
|
|
133 | (3) |
|
|
136 | (1) |
|
6 Large-Scale Interconnected Systems |
|
|
137 | (12) |
|
|
137 | (1) |
|
6.2 Statement of the Problem |
|
|
138 | (2) |
|
6.3 Least Squares Approach |
|
|
140 | (1) |
|
6.4 Instrumental Variables Approach |
|
|
141 | (3) |
|
6.5 Nonlinear Dynamic Components |
|
|
144 | (2) |
|
|
146 | (1) |
|
|
146 | (3) |
|
7 Structure Detection and Model Order Selection |
|
|
149 | (22) |
|
|
149 | (2) |
|
7.1.1 Types of Knowledge. Classification of Approaches |
|
|
149 | (1) |
|
|
150 | (1) |
|
7.2 Statement of the Problem |
|
|
151 | (2) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
7.3 Parametric Approximation of the Regression Function |
|
|
153 | (4) |
|
|
153 | (1) |
|
7.3.2 Approximation of the Regression Function |
|
|
154 | (2) |
|
7.3.3 The Nonlinear Least Squares Method |
|
|
156 | (1) |
|
7.4 Model Quality Evaluation |
|
|
157 | (1) |
|
7.5 The Algorithm of the Best Model Selection |
|
|
158 | (2) |
|
|
160 | (2) |
|
7.7 Computational Complexity |
|
|
162 | (1) |
|
|
162 | (6) |
|
7.8.1 Example I -- Voltage-Intensity Diode Characteristic |
|
|
162 | (2) |
|
7.8.2 Example II -- Model Order Selection |
|
|
164 | (1) |
|
7.8.3 Example III -- Fast Polynomial vs. Piecewise-Linear Model Competition |
|
|
164 | (4) |
|
|
168 | (3) |
|
|
171 | (10) |
|
|
171 | (1) |
|
8.2 Kernel Estimate for Time-Varying Regression |
|
|
172 | (3) |
|
8.3 Weighted Least Squares for NARMAX Systems |
|
|
175 | (2) |
|
8.4 Nonparametric Identification of Periodically Varying Systems |
|
|
177 | (1) |
|
8.5 Detection of Structure Changes |
|
|
178 | (2) |
|
|
180 | (1) |
|
|
181 | (8) |
|
9.1 IFAC Wiener-Hammerstein Benchmark |
|
|
181 | (1) |
|
9.2 Combined Methods in Action |
|
|
182 | (2) |
|
9.3 Results of Experiments |
|
|
184 | (2) |
|
|
186 | (3) |
|
|
189 | (4) |
|
10.1 Index of Considered Problems |
|
|
189 | (2) |
|
10.2 A Critical Look at the Combined Approach |
|
|
191 | (2) |
|
A Proofs of Theorems and Lemmas |
|
|
193 | (28) |
|
A.1 Recursive Least Squares |
|
|
193 | (2) |
|
A.2 Covariance Matrix of the LS Estimate |
|
|
195 | (1) |
|
A.3 Hammerstein System as a Special Case of NARMAX System |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (2) |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
202 | (3) |
|
A.10 Proof of Theorem 2.8 |
|
|
205 | (1) |
|
A.11 Proof of Theorem 2.9 |
|
|
206 | (1) |
|
A.12 Proof of Theorem 2.10 |
|
|
207 | (1) |
|
A.13 Proof of Theorem 2.11 |
|
|
207 | (1) |
|
A.14 Proof of Theorem 2.13 |
|
|
208 | (2) |
|
A.15 Proof of Proposition 3.1 |
|
|
210 | (1) |
|
A.16 Proof of Theorem 3.3 |
|
|
210 | (1) |
|
A.17 Proof of Theorem 4.1 |
|
|
211 | (3) |
|
A.18 The Necessary Condition for the 3-Stage Algorithm |
|
|
214 | (1) |
|
A.19 Proof of Theorem 5.1 |
|
|
215 | (1) |
|
A.20 Proof of Theorem 5.2 |
|
|
215 | (2) |
|
A.21 Proof of Theorem 5.4 |
|
|
217 | (2) |
|
A.22 Proof of Theorem 5.7 |
|
|
219 | (1) |
|
A.23 Example of ARX(1) Object |
|
|
220 | (1) |
|
|
221 | (6) |
|
|
221 | (1) |
|
B.2 Factorization Theorem |
|
|
221 | (1) |
|
|
222 | (1) |
|
B.4 Types of Convergence of Random Sequences |
|
|
223 | (1) |
|
|
224 | (1) |
|
B.6 Chebychev's Inequality |
|
|
224 | (1) |
|
B.7 Persistent Excitation |
|
|
225 | (1) |
|
|
225 | (1) |
|
B.9 Modified Triangle Inequality |
|
|
226 | (1) |
References |
|
227 | (10) |
Index |
|
237 | |