Atjaunināt sīkdatņu piekrišanu

E-grāmata: Communication Technologies for Networked Smart Cities

Edited by (University of Luxembourg, Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg), Edited by , Edited by (University of Luxembourg, I), Edited by (National Research Tomsk Polytechnic University, School of Computer Science and Robotics, Russia)
  • Formāts: EPUB+DRM
  • Sērija : Telecommunications
  • Izdošanas datums: 24-Jun-2021
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781839530302
  • Formāts - EPUB+DRM
  • Cena: 194,11 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Telecommunications
  • Izdošanas datums: 24-Jun-2021
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781839530302

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book showcases state-of-the-art research and innovations in communications technologies for connected smart cities. The interfaces of various communication technologies are explored, alongside design-specific issues for the integration of different architectural components, and the interoperability of various solutions.



One of the crucial challenges for future smart cities is to devise a citywide network infrastructure capable of effectively guaranteeing resource-efficient and reliable communications while managing the complexity of heterogeneous devices and access technologies. This edited book highlights and showcases state of the art research and innovations in 5G and beyond wireless communications technologies for connected smart cities. The main objectives of this work include the exploration of recent advances and application potentials of various communication technologies as promising enablers for future networked smart cities, the investigation of design-specific issues for the integration of different architectural components of smart cities, and addressing various challenges and identifying opportunities in terms of interoperability of potential solutions.

The book is aimed at a core and interdisciplinary audience of engineers, researchers and professionals working on smart cities concepts and supporting the integration of next-generation information, communication, networking and sensing technologies. It will also be a very useful ancillary for advanced students and other professionals working on next-generation communication networks.

About the editors xiii
1 Introduction to communication technologies for networked smart cities 1(10)
Shree Krishna Sharma
Dushantha Nalin K. Jayakody
Symeon Chatzinotas
Alagan Anpalagan
1.1 Introduction
1(2)
1.2 Overview of the book
3(1)
1.3
Chapter contributions
4(5)
References
9(2)
2 Narrowband IoT technologies for smart city applications 11(28)
Oltjon Kodheli
Shree Krishna Sharma
Symeon Chatzinotas
List of acronyms
11(1)
2.1 Introduction to smart city and IoT
12(1)
2.2 Wireless technologies/protocols for IoT
13(3)
2.2.1 Long-range IoT
14(1)
2.2.2 Why NB-IoT for smart cities?
15(1)
2.3 Narrowband IoT
16(7)
2.3.1 Physical layer specifications
16(4)
2.3.2 MAC layer specifications
20(3)
2.4 NB-IoT applications in smart cities
23(4)
2.4.1 Smart lighting
24(1)
2.4.2 Smart parking
24(1)
2.4.3 Smart transportation
24(1)
2.4.4 Smart hospital
25(1)
2.4.5 Smart home/building
25(1)
2.4.6 Smart wearables
26(1)
2.4.7 Smart grid
26(1)
2.4.8 Industrial applications
26(1)
2.5 NB-IoT via satellite for smart cities
27(7)
2.5.1 Relevant applications
27(1)
2.5.2 Architecture options
28(1)
2.5.3 The main challenges of an NB-IoT via satellite network
29(4)
2.5.4 Possible solutions
33(1)
2.6 Conclusions
34(1)
References
34(5)
3 Wireless green technologies for smart cities 39(28)
A kashkumar Rajaram
Dushantha Nalin K. Jayakody
Rui Dinis
Summary of main acronyms
40(1)
3.1 Introduction
40(3)
3.2 Modulation-based simultaneous wireless information and power transfer
43(10)
3.2.1 System model
43(2)
3.2.2 Hybrid constellation shaping in M-QAM
45(1)
3.2.3 Comparison of M-SWIPT and PS-SWIPT
46(3)
3.2.4 Theoretical symbol error and achievable rate of M-QAM with M-SWIPT
49(1)
3.2.5 Performance analysis of M-SWIPT
50(3)
3.3 Frequency-splitting-based simultaneous wireless information and power transmission
53(9)
3.3.1 Analysis of non-linear distortion due to FS-SWIPT
56(1)
3.3.2 Performance analysis of FS-SWIPT
57(5)
3.4 Conclusion
62(1)
References
63(4)
4 Channel models for an indoor power line communication system 67(42)
Oluwafemi Kolade
Ayokunle D. Familua
Ling Cheng
4.1 Introduction
67(2)
4.2 Memoryless PLC channel
69(10)
4.2.1 Multipath channel model
69(3)
4.2.2 Middleton class A noise model
72(1)
4.2.3 Single-carrier modulation for PLC
73(2)
4.2.4 Multicarrier modulation for PLC
75(4)
4.3 PLC channel with memory
79(1)
4.4 Hidden Markov models
79(6)
4.4.1 Model notations
80(1)
4.4.2 Model architecture
80(1)
4.4.3 HMM problems
81(1)
4.4.4 Generalized N-state and three-state HMMs
82(3)
4.5 Semi-hidden Fritchman Markov models
85(3)
4.5.1 Generalized SHFMM basics
86(1)
4.5.2 A three-state SHFMM
87(1)
4.6 Machine learning estimation algorithm for SHFMMs
88(4)
4.6.1 The Baum-Welch algorithm
89(1)
4.6.2 First-order Baum-Welch algorithm for SHFMM
90(2)
4.7 SHFMM for indoor PLC system
92(5)
4.7.1 The software-defined NB-PLC transceiver model
92(2)
4.7.2 Modeling methodology
94(3)
4.8 Estimated models-state crossover probabilities
97(2)
4.8.1 Estimated state crossover probabilities (mildly disturbed)
97(1)
4.8.2 Estimated state crossover probabilities (heavily disturbed)
98(1)
4.9 Model validation and analysis
99(4)
4.9.1 Log-likelihood ratio plots for the estimated models
99(1)
4.9.2 Measured versus model error-free run distribution plots
99(1)
4.9.3 Measured versus model error probabilities
100(1)
4.9.4 The chi-square test and the mean square error
100(3)
4.10 Conclusions
103(1)
References
103(6)
5 Non-orthogonal multiple-access-based visible light communications for smart city applications 109(20)
Priyashantha Tennakoon
Dushantha Nalin K. Jayakody
Sofiene Affes
List of abbreviations
109(1)
5.1 Introduction
110(8)
5.1.1 Visible light communication
112(1)
5.1.2 Non-orthogonal multiple access
113(5)
5.2 A NOMA-VLC communication system for smart buildings: a use case
118(8)
5.2.1 System model
118(2)
5.2.2 Achievable rates of the system
120(1)
5.2.3 Performance trade-off of the system
121(3)
5.2.4 Energy efficiency of the system
124(2)
5.3 Conclusion
126(1)
References
126(3)
6 A comprehensive review of communication technologies for street lighting applications in smart cities 129(22)
Murat Kuzlu
Manisa Pipattanasomporn
6.1 Introduction
130(1)
6.2 Smart street lighting applications in smart cities
131(2)
6.2.1 Basic street lighting control
132(1)
6.2.2 Advanced street lighting control
132(1)
6.2.3 Performance/energy reporting
133(1)
6.2.4 Environmental/traffic/public safety monitoring
133(1)
6.2.5 Signage, alerts, and other services
133(1)
6.2.6 Emergency response
133(1)
6.3 Architecture: smart street lights system with key components
133(4)
6.3.1 Control center
134(1)
6.3.2 Street lights
134(2)
6.3.3 Sensors
136(1)
6.3.4 Other optional services and smart city applications
136(1)
6.3.5 Communication network
136(1)
6.4 Various communication technologies and protocols supporting smart street lighting applications
137(6)
6.4.1 Communication technologies and protocols
137(5)
6.4.2 Communication protocols
142(1)
6.5 Network requirements and suitable communication technologies of smart street lighting applications
143(2)
6.6 Summary
145(1)
References
145(6)
7 Smart vehicles for smart cities 151(24)
Manzoor Ahmed Khan
Hesham El-Sayed
7.1 Introduction
152(1)
7.2 Design goals of autonomous vehicles
153(1)
7.3 SAE levels-an overview
154(2)
7.3.1 Level-0 automation
154(1)
7.3.2 Level-1 automation
155(1)
7.3.3 Level-2 automation
155(1)
7.3.4 Level-3 automation
155(1)
7.3.5 Level-4 automation
155(1)
7.3.6 Level-5 automation
155(1)
7.4 Vehicular communication
156(5)
7.4.1 Vehicle-to-vehicle
157(1)
7.4.2 Vehicle-to-infrastructure
158(1)
7.4.3 Vehicle-to-everything
159(1)
7.4.4 Cellular vehicle-to-everything
160(1)
7.5 ITSs enabled by flying RSUs
161(4)
7.5.1 Traffic modeling
163(1)
7.5.2 UAV deployment strategy
164(1)
7.6 Trust framework for vehicular networks
165(7)
7.6.1 Understanding trust in vehicular networks
165(3)
7.6.2 Evaluation of the trust model
168(1)
7.6.3 Decision tree classification model to frame trust rules
169(1)
7.6.4 Artificial neural networks to train the vehicular nodes
170(2)
7.7 Conclusion, open issues, and solution directions
172(1)
References
172(3)
8 Vehicle-assisted framework for delay-sensitive applications in smart cities 175(26)
Tayyaba Zaheer
Sarah Iqbal
Asad Waqar Malik
Anis U. Rahman
Zeseya Sharmin
8.1 Introduction
175(1)
8.2 Vehicular networks
176(1)
8.3 Vehicle-assisted network and their challenges
177(3)
8.4 Traditional offloading decision models
180(12)
8.4.1 Emerging decision models for vehicular networks
182(7)
8.4.2 Data protection, security, and trust management
189(3)
8.5 Applications of vehicular networks
192(1)
8.6 Conclusion
193(1)
8.7 Future directions
194(1)
References
195(6)
9 Big data analytics for intelligent management of autonomous vehicles in smart cities 201(30)
Qimei Cui
Xuefei Zhang
Wei Ni
Ping Zhang
9.1 Motivation and introduction
201(2)
9.2 Big data analytic and vehicular mobility modeling for smart city
203(7)
9.2.1 Description of captured city data
203(1)
9.2.2 Vehicular mobility models based on data analysis
204(6)
9.3 Network calculus-assisted intelligent management of autonomous vehicle fleet in smart city
210(11)
9.3.1 Constructing a resource model through ML
212(6)
9.3.2 Online traffic modeling and management
218(3)
9.4 Federated-learning-based autonomous driving for secure intelligent AVs management
221(4)
9.4.1 Background
221(1)
9.4.2 FL-based autonomous driving structure
222(2)
9.4.3 Performance analysis
224(1)
9.5 Conclusion
225(1)
References
226(5)
10 Machine-learning-enabled smart cities 231(22)
Rida Zia-ul-Mustafa
Syed Ali Hassan
10.1 Machine learning in the context of smart city
232(1)
10.1.1 Supervised learning
232(1)
10.1.2 Unsupervised learning
232(1)
10.2 Smart grid
233(3)
10.2.1 Smart grid operation
234(1)
10.2.2 Smart grid security
235(1)
10.2.3 Renewable energy systems
235(1)
10.3 City mobility
236(2)
10.3.1 Traffic prediction
236(1)
10.3.2 Online transportation networks
236(1)
10.3.3 Self-driving vehicles
237(1)
10.3.4 Efficient parking garages
237(1)
10.3.5 Traffic management
237(1)
10.4 City security and safety
238(1)
10.5 Smart healthcare
238(1)
10.6 Smart environment
239(2)
10.6.1 Smart air monitoring
240(1)
10.6.2 Smart waste management
240(1)
10.7 Smart home automation
241(2)
10.7.1 Device management
241(1)
10.7.2 Energy management
242(1)
10.7.3 Home security
242(1)
10.7.4 Home organisation
242(1)
10.8 Smart business
243(2)
10.8.1 Financial services
243(1)
10.8.2 Marketing
244(1)
10.9 Standardising smart cities
245(1)
10.10 Conclusion
245(1)
References
246(7)
11 Blockchain-based secure communication in smart cities 253(22)
Mudassar Ali
Muhammad Naeem
Alagan Anpalagan
11.1 Introduction
253(1)
11.2 IoT, big data, and smart city
254(4)
11.2.1 Internet of Things
254(2)
11.2.2 Big data
256(1)
11.2.3 Smart city
256(2)
11.3 Security and privacy issues in smart city
258(2)
11.3.1 Cybersecurity threats in smart city
258(1)
11.3.2 Botnets attacks in smart city
259(1)
11.3.3 AI-based privacy threats in smart city
259(1)
11.4 Security and privacy requirements of the smart city
260(1)
11.4.1 Authentication
260(1)
11.4.2 Confidentiality
260(1)
11.4.3 Availability
260(1)
11.4.4 Integrity
260(1)
11.4.5 Privacy protection of citizens
261(1)
11.5 Blockchain in IoT/smart city
261(4)
11.5.1 Introduction to blockchains
261(3)
11.5.2 Motivation for application of blockchains in smart city
264(1)
11.6 Blockchain-based security mechanisms (BBSMs) in smarty city
265(4)
11.6.1 Securing energy management in smart city
265(1)
11.6.2 Securing smart transportation in smart city
266(2)
11.6.3 Securing health-care systems in smart city
268(1)
11.7 Case studies: blockchain-enabled smart cities
269(1)
11.8 Open issues and future research directions
270(1)
11.8.1 Lightweight security mechanisms
270(1)
11.8.2 Innovative privacy preserving schemes
270(1)
11.8.3 Scalability issues
270(1)
11.8.4 Optimization of consensus algorithms
270(1)
11.8.5 Fair miner selection
271(1)
11.8.6 Blockchain standardization
271(1)
11.9 Conclusion
271(1)
References
271(4)
12 A software-defined blockchain-based architecture for scalable and tamper-resistant IoT-enabled smart cities 275(26)
Akram Hakiri
Aniruddha Gokhale
12.1 Introduction
276(2)
12.2 Background and literature review
278(4)
12.2.1 Overview of blockchain technology
278(2)
12.2.2 Convergence of blockchain and IoT
280(1)
12.2.3 Blockchain security over SDN
281(1)
12.3 Architectural design
282(6)
12.3.1 System design
282(2)
12.3.2 Flow management
284(2)
12.3.3 Smart contract design
286(1)
12.3.4 Consensus algorithm
287(1)
12.4 Use cases
288(4)
12.4.1 Blockchain-SDN-enabled Internet of vehicles
288(1)
12.4.2 When blockchain and SDN meet Internet of Energy (IoE)
289(2)
12.4.3 Improving security between IoT gateways
291(1)
12.5 Open challenges and directions for future work
292(1)
12.5.1 Scalability issues
292(1)
12.5.2 Power consumption
292(1)
12.5.3 Storage
293(1)
12.5.4 Privacy leakage
293(1)
12.6 Potential future research opportunities
293(2)
12.6.1 Off-chaining models
293(1)
12.6.2 Data analytics
294(1)
12.6.3 Artificial intelligence
295(1)
12.6.4 Smart contracts
295(1)
12.7 Conclusion
295(1)
Acknowledgments
296(1)
References
296(5)
13 Blockchain-based secure and trustworthy sensing for IoT-based smart cities 301(18)
Wenjia Li
Jerry Q. Cheng
13.1 Introduction
301(2)
13.2 Basics of blockchain technology
303(4)
13.2.1 Structure of a blockchain
304(1)
13.2.2 Blockchain consensus
305(1)
13.2.3 Smart contracts
305(1)
13.2.4 Blockchain type
306(1)
13.2.5 Properties of blockchain
306(1)
13.3 Security and trust issues in IoT-based smart cities
307(4)
13.3.1 Security constraints and limitations in IoT
307(2)
13.3.2 Security requirements and issues for IoT
309(2)
13.4 Enhancing the security and trust of IoT-based smart cities using blockchain
311(2)
13.4.1 Malicious node detection approaches
311(1)
13.4.2 Trust management schemes
312(1)
13.4.3 Blockchain-based security and trust mechanisms
313(1)
13.5 Open challenges
313(2)
13.6 Conclusion
315(1)
References
315(4)
Index 319
Shree Krishna Sharma is currently a research scientist at the Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, and Adjunct Professor at the Department of Computer Science, Ryerson University, Canada. He has (co-)authored more than 100 scientific papers. He is a senior member of the IEEE and has been an associate editor for IEEE Access journal. He is lead editor of the IET book Satellite Communications in the 5G Era.



Dushantha Nalin K. Jayakody is a professor at the School of Computer Science & Robotics, National Research Tomsk Polytechnic University, Russia. He is a Senior Member of the IEEE. He is also Head of Infocom Lab, TPU, Russia and Head, Centre for Telecommunication Research, SLTC, Sri Lanka. He has edited 2 books and published over 170 international peer-reviewed journal and conference publications. He is an Area Editor for PHYCOM and MDPI Information & Sensors.



Symeon Chatzinotas is a full professor, the chief scientist I and co-head of the research group SIGCOM in the Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg. He has (co-)authored more than 400 technical papers. He is in the editorial board of the IEEE Open Journal of Vehicular Technology and the International Journal of Satellite Communications and Networking. He is co-editor of the IET book Satellite Communications in the 5G Era.



Alagan Anpalagan is a professor at the Department of Electrical and Computer Engineering, Ryerson University, Canada. He has co-authored four edited books and co-chaired several conferences. He is a fellow of the IET and EIC. He received his PhD degree in Electrical Engineering from the University of Toronto, Canada.