Atjaunināt sīkdatņu piekrišanu

E-grāmata: Compact Antennas for Wireless Communications and Terminals - Theory and Design: Theory and Design [Wiley Online]

  • Formāts: 272 pages
  • Sērija : ISTE
  • Izdošanas datums: 12-Jul-2011
  • Izdevniecība: ISTE Ltd and John Wiley & Sons Inc
  • ISBN-10: 1118603435
  • ISBN-13: 9781118603437
  • Wiley Online
  • Cena: 168,05 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formāts: 272 pages
  • Sērija : ISTE
  • Izdošanas datums: 12-Jul-2011
  • Izdevniecība: ISTE Ltd and John Wiley & Sons Inc
  • ISBN-10: 1118603435
  • ISBN-13: 9781118603437
Specialist engineers and researchers examine microwave antennas and more specifically planar versions, which are the types of antenna preferred at microwave frequencies in modern integrated communication systems. They explain the principles of planar and/or small volume antennas, problems of design and manufacture, and constraints and limitations presented by the antenna within the body of the communication system. Among specific topics are the transmission line model, electrical equivalent circuit of a printed antenna, circularly polarized antennas, and reconfigurable antennas. Annotation ©2011 Book News, Inc., Portland, OR (booknews.com)

Compact Antennas for Wireless Communications and Terminals deals with compact microwave antennas and, more specifically, with the planar version of these antennas. Planar antennas are the most appropriate type of antenna in modern communication systems and more generally in all applications requiring miniaturization, integration and conformation such as in mobile phone handsets.
The book is suitable for students, engineers and scientists eager to understand the principles of planar and small antennas, their design and fabrication issues, and modern aspects such as UWB antennas, reconfigurable antennas and diversity issues.
Introduction xi
Chapter 1 General Information About Printed Antennas
1(14)
Jean-Marc Laheurte
1.1 Physical characteristics
1(3)
1.2 Properties, limitations, and applications
4(3)
1.3 Printed rectangular antenna viewed as a wide microstrip line
7(1)
1.4 Manufacturing processes
8(3)
1.5 Microwave substrates
11(4)
Chapter 2 Transmission Line Model
15(10)
Jean-Marc Laheurte
2.1 Introduction
15(1)
2.2 Equivalent circuit
16(4)
2.2.1 Effective permittivity
16(1)
2.2.2 Equivalent line extension
16(1)
2.2.3 End of line equivalent circuit
17(2)
2.2.4 Process for design of a rectangular antenna
19(1)
2.2.5 Example
20(1)
2.3 Input impedance
20(5)
Chapter 3 Cavity Model
25(14)
Jean-Marc Laheurte
3.1 Introduction
25(1)
3.2 Formulation of the electromagnetic problem
25(4)
3.3 Calculation of expressions for fields and currents of a rectangular patch
29(2)
3.4 Expressions for principal modes
31(2)
3.5 Cartography of modal currents and associated radiation patterns
33(6)
Chapter 4 Radiation of a Printed Antenna
39(16)
Jean-Marc Laheurte
4.1 Introduction
39(1)
4.2 Modelization using two equivalent radiating slots
40(3)
4.3 Calculation of the field radiated by a horizontal radiating slot
43(1)
4.4 Calculation of the field radiated by the rectangular patch
44(1)
4.5 Determination of the radiation pattern in the principal planes
44(2)
4.6 Influence of height
46(1)
4.7 Influence of the ground plane
47(1)
4.8 Polarization
48(1)
4.9 Directivity
49(2)
4.10 Influence of the substrate on resonant frequency: parametric study based on antenna RCS
51(4)
Chapter 5 Electrical Equivalent Circuit of a Printed Antenna
55(14)
Jean-Marc Laheurte
5.1 Energy considerations
55(2)
5.2 Equivalent circuit
57(1)
5.3 Determination of WE, WM, and B for a rectangular patch
58(2)
5.4 Modeling using a tank circuit
60(2)
5.5 Quality factor of an antenna
62(1)
5.6 Calculation of radiation quality factor
63(1)
5.7 Calculation of efficiency
64(3)
5.7.1 Losses in conductive walls
64(1)
5.7.2 Losses in the dielectric
65(1)
5.7.3 Radiated power
66(1)
5.8 Influence of surface waves on bandwidth and efficiency
67(2)
Chapter 6 Feeding Circuits for Microstrip Antennas
69(20)
Jean-Marc Laheurte
Benoit Poussot
6.1 Introduction
69(2)
6.2 Direct coupling by coaxial probe
71(2)
6.3 Excitation by proximity coupling
73(1)
6.4 Excitation by slot coupling
74(15)
Chapter 7 Circularly Polarized Antennas
89(32)
Jean-Marc Laheurte
Marjorie Grzeskowiak
Stephane Protat
7.1 Principles of circular polarization
90(4)
7.1.1 Elliptical and circular linear polarization
90(1)
7.1.2 Right- or left-hand circular polarization
91(1)
7.1.3 Axial and cross-polarization ratios
92(1)
7.1.4 Measurement of circular polarization
93(1)
7.2 Parasitic radiation -- degradation of circular polarization
94(2)
7.3 Patch fed by single or dual excitation
96(3)
7.3.1 Single excitation
96(2)
7.3.2 Dual excitation
98(1)
7.4 Sequential array
99(9)
7.4.1 Principle of sequential rotation: initial analysis
99(7)
7.4.2 Sequential rotation applied to a radiating element fed by multiple feeds
106(2)
7.5 Spiral and quadrifilar helix antennas
108(11)
7.5.1 Spiral antennas
108(5)
7.5.2 Quadrifilar helix antennas
113(6)
7.6 Conclusion
119(2)
Chapter 8 Wideband Antennas
121(22)
Xavier Begaud
8.1 Multiresonant antennas
122(3)
8.1.1 Principle
122(1)
8.1.2 Widening bandwidth through resonance coupling
122(3)
8.2 Traveling wave antennas
125(1)
8.2.1 Tapered slot antennas
125(1)
8.3 Frequency independent antennas
126(6)
8.3.1 Introduction
126(1)
8.3.2 Equiangular antennas
127(1)
8.3.3 Log-periodic antennas
128(1)
8.3.4 Sinuous antennas
129(3)
8.4 Ultra-wideband antennas
132(8)
8.4.1 Biconical and Bow-Tie antennas
134(3)
8.4.2 Planar monopoles
137(3)
8.5 Conclusion
140(3)
Chapter 9 Miniature Antennas
143(26)
Guillaume Villemaud
9.1 Introduction
143(1)
9.2 Which types of antennas should be used for integration?
144(1)
9.2.1 Non-resonant antennas
144(1)
9.2.2 Resonant antennas
145(1)
9.3 Integration limits in a finite volume
145(1)
9.4 Resonant antennas in fundamental mode
146(6)
9.4.1 General considerations
146(2)
9.4.2 Wire antennas
148(2)
9.4.3 Planar antennas
150(2)
9.4.4 Comparison
152(1)
9.4.5 3D antennas
152(1)
9.5 Bulk reduction techniques
152(12)
9.5.1 Use of dielectrics with strong permittivity
153(1)
9.5.2 Modification of wave path
153(3)
9.5.3 Utilization of inductive, capacitive, and short-circuit effects
156(4)
9.5.4 Control over radiation
160(4)
9.6 Multiresonant antennas
164(2)
9.7 Synthesis and discussion
166(3)
Chapter 10 Reconfigurable Antennas
169(36)
Jean-Marc Laheurte
10.1 Introduction
169(1)
10.2 Basic topologies and constraints
170(4)
10.3 Switched components: available technologies
174(6)
10.4 Frequency reconfigurable antennas (FRAs)
180(5)
10.4.1 Introduction
180(1)
10.4.2 Examples of radiating slot-based FRA
181(3)
10.4.3 Examples of patch- or PIFA-based FRA integrating switchable slots
184(1)
10.4.4 Examples of FRA using switched short circuits
184(1)
10.4.5 FRA utilizing a loaded stub
185(1)
10.5 Introduction to RAs in terms of polarization and radiation pattern
185(2)
10.6 Polarized reconfigurable antennas (PRAs)
187(3)
10.7 Radiation pattern reconfigurable antennas (RPRAs)
190(15)
10.7.1 RPRA with rotational symmetry and switched parasitics
192(1)
10.7.2 RPRA with parasitic elements loaded using switched reactance
193(9)
10.7.3 Unit cell of reflective array based on a patch of slots [ CAD 05]
202(3)
Chapter 11 Introduction to Antenna Diversity
205(28)
Lionel Rudant
11.1 Benefits of antenna diversity
205(9)
11.1.1 Effects of multipath propagation
206(1)
11.1.2 Principles of antenna diversity
207(4)
11.1.3 Non-ideal antenna diversity
211(3)
11.2 Performance of multiantenna systems
214(8)
11.2.1 Antenna balance
214(2)
11.2.2 Antenna independence
216(6)
11.3 Multiantenna systems
222(6)
11.3.1 Space diversity
222(2)
11.3.2 Compact multiantenna system
224(4)
11.4 Conclusion and looking toward MIMO
228(5)
Bibliography 233(8)
List of Authors 241(2)
Index 243
Jean-Marc Laheurte is a professor at the Université Paris-Est Marne-La-Vallée in France.