Atjaunināt sīkdatņu piekrišanu

E-grāmata: Compact Hierarchical Bipolar Transistor Modeling with Hicum [World Scientific e-book]

(Univ Of Technology Dresden, Germany & Univ Of California San Diego, Ca, Usa), (Indian Inst Of Technology Madras, India)
Citas grāmatas par šo tēmu:
  • World Scientific e-book
  • Cena: 184,25 €*
  • * this price gives unlimited concurrent access for unlimited time
Citas grāmatas par šo tēmu:
Compact Hierarchical Bipolar Transistor Modeling with HICUM will be of great practical benefit to professionals from the process development, modeling and circuit design community who are interested in the application of bipolar transistors, which include the SiGe:C HBTs fabricated with existing cutting-edge process technology. The book begins with an overview on the different device designs of modern bipolar transistors, along with their relevant operating conditions; while the subsequent chapter on transistor theory is subdivided into a review of mostly classical theories, brought into context with modern technology, and a chapter on advanced theory that is required for understanding modern device designs. This book aims to provide a solid basis for the understanding of modern compact models.
Foreword vii
Biographies 1(2)
Preface 3(20)
Chapter 1 Introduction
23(14)
References
30(7)
Chapter 2 Device Modeling Overview
37(40)
2.1 A brief history on bipolar transistor technology
39(10)
2.2 Semiconductor equations
49(6)
2.3 Compact modeling
55(4)
2.4 Charge definitions in bipolar transistors
59(18)
2.4.1 Regional analysis of bipolar transistors
61(10)
2.4.2 Relation between charge storage components and measurement
71(2)
References
73(4)
Chapter 3 Theory of Homojunction Bipolar Transistors
77(102)
3.1 Operation principle
78(9)
3.1.1 "High" collector voltage
79(4)
3.1.2 "Low" collector voltage
83(3)
3.1.3 Summary
86(1)
3.2 Electric field calculations
87(8)
3.2.1 Fully depleted collector region - high voltage case
88(1)
3.2.2 Partially depleted collector: low voltage case
89(6)
3.3 Static operation and characteristics
95(28)
3.3.1 Transfer current
95(2)
3.3.1.1 Low injection
97(6)
3.3.1.2 High injection
103(3)
3.3.1.3 Medium injection
106(2)
3.3.2 Back injection related current components
108(6)
3.3.3 Currents related to space-charge region recombination
114(3)
3.3.4 Avalanche current from base-collector breakdown
117(6)
3.4 Depletion (junction) charges and capacitances
123(8)
3.4.1 Classical approach
123(4)
3.4.2 High forward bias operation
127(2)
3.4.3 Punch-through case
129(2)
3.5 Mobile charge and storage times
131(48)
3.5.1 Low injection
132(1)
3.5.1.1 Neutral base region
133(5)
3.5.1.2 Base-collector region
138(6)
3.5.1.3 Neutral emitter
144(4)
3.5.1.4 Base-emitter space charge region
148(4)
3.5.1.5 Summary of the results for low current densities
152(1)
3.5.2 Medium current densities
152(1)
3.5.2.1 Neutral base region
153(1)
3.5.2.2 Collector region
154(1)
A Low collector voltage
155(1)
B High collector voltage
156(1)
C Critical current
156(1)
3.5.2.3 BC space-charge region
157(1)
3.5.2.4 Neutral emitter region
158(3)
3.5.2.5 BE space-charge region
161(1)
3.5.2.6 Summary
161(1)
3.5.3 High current densities
161(1)
3.5.3.1 Collector region
162(1)
A Low collector voltage
162(1)
B High collector voltage
163(2)
C Charge and storage time
165(4)
3.5.3.2 Neutral base region
169(2)
3.5.3.3 BC space-charge region
171(2)
3.5.3.4 Neutral emitter region
173(1)
3.5.3.5 BE space-charge region
173(1)
3.5.3.6 Summary
174(1)
References
174(5)
Chapter 4 Advanced Theory
179(122)
4.1 HBT operation principle
180(23)
4.1.1 The SiGe heterojunction in a neutral region
180(4)
4.1.2 Heterojunction diode
184(3)
4.1.3 SiGe HBT
187(4)
4.1.3.1 High-voltage case
191(2)
4.1.3.2 Low-voltage case
193(2)
4.1.3.3 The base-collector barrier
195(8)
4.2 Electric field in the collector region
203(6)
4.3 Static operation and characteristics
209(40)
4.3.1 Transfer current from integral charge-control relations
210(4)
4.3.1.1 The Moll-Ross relation
214(1)
4.3.1.2 The integral charge-control relation
215(6)
4.3.1.3 Generalized integral charge-control relation
221(6)
A Hole charge partitioning
227(1)
B Depletion charge
228(4)
C Minority charge
232(2)
D Compact formulation
234(3)
4.3.2 Base current components related to recombination
237(3)
4.3.3 Non-local base-collector avalanche current
240(7)
4.3.4 Tunnelling
247(2)
4.4 Charge storage
249(21)
4.4.1 Depletion charges
249(1)
4.4.1.1 Influence of the material composition
249(4)
4.4.1.2 Current dependence of base-collector depletion charge
253(5)
4.4.2 Mobile charge
258(1)
4.4.2.1 Neutral base region
259(3)
4.4.2.2 Neutral collector
262(4)
4.4.2.3 Base-collector depletion region
266(1)
4.4.2.4 Neutral emitter
266(3)
4.4.2.5 Base-emitter depletion region
269(1)
4.5 Vertical non-quasi-static effects
270(31)
4.5.1 Introduction
270(2)
4.5.2 Time-domain description
272(11)
4.5.3 Frequency domain solution
283(7)
4.5.4 Discussion and relation to compact modeling
290(6)
References
296(5)
Chapter 5 Geometry (Layout) Scaling
301(130)
5.1 Introduction
302(3)
5.2 Internal base resistance
305(27)
5.2.1 Static operation
306(1)
5.2.1.1 Current crowding effect
306(6)
5.2.1.2 Conductivity modulation
312(5)
5.2.2 Small-signal operation
317(7)
5.2.3 Large-signal transient operation
324(8)
5.3 Emitter junction perimeter effects
332(31)
5.3.1 Standard scaling of currents and charges
333(2)
5.3.2 Transfer current
335(19)
5.3.3 Base current components
354(3)
5.3.4 Charge storage
357(1)
5.3.4.1 Depletion charges
358(1)
5.3.4.2 Minority charge
359(2)
5.3.4.3 Base resistance under the BE spacer
361(2)
5.4 Three-dimensional and parasitic effects
363(56)
5.4.1 Standard-scaling for a 3D structure
364(1)
5.4.2 Minority charge
365(7)
5.4.3 Base resistance
372(5)
5.4.3.1 Internal base resistance for the 3D case
377(1)
A Static operation
377(3)
B Small-signal frequency dependent operation
380(2)
C Large-signal transient operation
382(1)
5.4.3.2 Total base resistance for the 3D case
382(1)
A Double base contact in parallel to the emitter
383(5)
B Single base contact in parallel to the emitter
388(6)
C Base contacts perpendicular to the emitter
394(3)
5.4.3.3 Summary
397(1)
5.4.4 Avalanche pinch-in effect
398(4)
5.4.5 Base-collector region related capacitances
402(2)
5.4.6 Base-emitter isolation capacitance
404(1)
5.4.7 External collector resistance
405(4)
5.4.8 Emitter resistance
409(2)
5.4.9 Collector-substrate capacitance
411(2)
5.4.10 Parasitic substrate transistor
413(3)
5.4.11 Intra-device substrate coupling
416(3)
5.5 Non-standard-scaling
419(12)
References
424(7)
Chapter 6 Temperature Effects
431(40)
6.1 Overview
432(1)
6.2 Physical effects
432(6)
6.3 Temperature dependence of transistor characteristics
438(16)
6.3.1 Charge storage
438(1)
6.3.1.1 Depletion charge
438(4)
6.3.1.2 Mobile and minority charge
442(2)
6.3.1.3 Zero-bias hole charge
444(3)
6.3.2 Current components
447(1)
6.3.2.1 Transfer current
447(2)
6.3.2.2 Back injection related base current components
449(1)
6.3.2.3 Recombination currents
450(1)
6.3.2.4 Base-collector avalanche current
451(1)
6.3.2.5 Temperature dependence of current gain
451(2)
6.3.2.6 Tunneling current
453(1)
6.3.3 Series resistances
453(1)
6.3.4 Noise
454(1)
6.4 Self-heating effects
454(17)
6.4.1 Intra-device electro-thermal coupling
456(5)
6.4.2 Inter-device electro-thermal coupling
461(4)
References
465(6)
Chapter 7 Compact Noise Modeling
471(32)
7.1 Basic noise mechanisms
472(13)
7.1.1 Fundamentals
472(5)
7.1.2 Thermal noise
477(3)
7.1.3 Shot noise
480(1)
7.1.4 Recombination and generation noise
481(2)
7.1.5 Flicker noise
483(2)
7.2 Intrinsic transistor
485(10)
7.2.1 Neutral base region
485(8)
7.2.2 Base-collector space-charge region
493(1)
7.2.3 Neutral emitter
494(1)
7.2.4 Impact ionization noise
494(1)
7.3 Multi-dimensional effects
495(8)
7.3.1 Internal transistor
495(1)
7.3.2 External (access) regions
496(1)
7.3.3 Flicker and 1/f noise
497(3)
References
500(3)
Chapter 8 HICUM Level2
503(76)
8.1 Internal transistor model
504(29)
8.1.1 Depletion charges and capacitances
506(1)
8.1.1.1 Internal base-emitter junction
506(1)
8.1.1.2 Internal base-collector junction
507(4)
8.1.2 Minority charge and transit times
511(1)
8.1.2.1 Forward minority charge component
512(7)
8.1.2.2 Inverse minority charge component
519(1)
8.1.3 Quasi-static transfer current
519(4)
8.1.4 Non-quasi-static effects
523(2)
8.1.5 Quasi-static base current components
525(2)
8.1.6 Collector-base breakdown
527(1)
8.1.7 Emitter-base tunneling
528(1)
8.1.8 Internal base resistance
529(4)
8.2 Complete transistor
533(11)
8.2.1 Mobile charge including collector current spreading
534(4)
8.2.2 Emitter perimeter region
538(2)
8.2.3 External base-collector region
540(1)
8.2.4 External series resistances
541(1)
8.2.5 Collector-substrate junction
542(1)
8.2.6 Parasitic substrate transistor
542(1)
8.2.7 Substrate network
543(1)
8.3 Temperature dependence
544(10)
8.3.1 Temperature dependent bandgap voltage
545(1)
8.3.2 Depletion charges and capacitances
545(2)
8.3.3 Transfer current
547(1)
8.3.4 Transit time and minority charge
548(2)
8.3.5 Junction current components
550(3)
8.3.6 Series resistances
553(1)
8.3.7 Parasitic substrate transistor
554(1)
8.4 Self-Heating model
554(3)
8.5 Small-signal model
557(2)
8.6 Noise model
559(5)
8.7 Model parameter list
564(15)
References
576(3)
Chapter 9 Parameter Determination for HICUM/L2
579(52)
9.1 Introduction
580(2)
9.2 Wafer selection
582(1)
9.3 Relevant transistor dimensions
583(2)
9.4 Measurements
585(5)
9.4.1 IV measurements and data
585(1)
9.4.2 CV measurements and data
585(1)
9.4.3 S-parameter measurements and data
586(1)
9.4.4 Measurement conditions
587(3)
9.4.5 Sequence of measurements
590(1)
9.5 Extraction flow
590(2)
9.6 Step-by-step extraction procedure
592(32)
9.6.1 BC depletion and isolation capacitance
596(2)
9.6.2 BE depletion and isolation capacitance
598(1)
9.6.3 CS depletion capacitance
599(1)
9.6.4 Internal base (sheet) resistance
600(1)
9.6.5 Components of external base resistance
601(1)
9.6.6 Emitter resistance
602(1)
9.6.7 Components of external collector resistance
603(1)
9.6.8 Collector current at low bias
604(2)
9.6.9 Current across BE junction at low bias
606(1)
9.6.10 Current across the BC junction (at low bias)
607(1)
9.6.11 Thermal resistance
608(1)
9.6.12 Forward transit time
609(2)
9.6.13 Collector current at high injection
611(2)
9.6.14 Base-collector Breakdown
613(1)
9.6.15 High-Frequency effects
614(1)
9.6.15.1 Vertical non-quasi-static effects
614(1)
9.6.15.2 Partitioning of the external BC capacitance
615(1)
9.6.16 Intra-device substrate coupling
616(1)
9.6.17 High-frequency emitter current crowding
617(1)
9.6.18 Parasitic substrate transistor elements
618(1)
9.6.18.1 Transfer current
618(1)
9.6.18.2 Charge storage time
619(1)
9.6.19 Temperature dependence
619(1)
9.6.19.1 Bandgap voltages related parameters
620(1)
9.6.19.2 Series resistances
621(1)
9.6.19.3 Transit time at low current densities
621(1)
9.6.19.4 Collector-emitter saturation voltage
622(1)
9.6.19.5 BC breakdown
622(2)
9.7 Summary and discussions
624(7)
References
626(5)
Chapter 10 Model Hierarchy
631(48)
10.1 Introduction
632(2)
10.2 HICUM/L0: a simplified model??
634(37)
10.2.1 Large-signal model formulation
635(1)
10.2.1.1 Equivalent circuit
636(1)
10.2.1.2 Depletion charges and capacitances
637(1)
A Base-emitter junction
637(1)
B Base-collector junction
638(2)
C Collector-substrate junction
640(1)
10.2.1.3 Minority charge
640(2)
10.2.1.4 Quasi-static transfer current
642(10)
10.2.1.5 Static base current components
652(1)
10.2.1.6 Avalanche current
653(1)
10.2.1.7 Parasitic substrate transistor
654(1)
10.2.1.8 Series resistances
654(3)
10.2.1.9 External (parasitic) capacitances
657(1)
10.2.1.10 Self-heating
657(1)
10.2.2 Temperature dependence
658(3)
10.2.3 Small-Signal Operation
661(1)
10.2.4 Noise Model
662(1)
10.2.5 Parameter List
663(6)
10.2.6 Parameter Extraction
669(1)
10.2.6.1 Parameter determination from HICUM/L2
669(1)
10.2.6.2 Parameter extraction from experimental data
670(1)
10.3 HICUM/L4: a distributed mode
671(8)
References
676(3)
Chapter 11 Application Examples
679(36)
11.1 Geometry scaling approach
680(5)
11.2 Examples for comparisons to measured device characteristics
685(15)
11.2.1 HICUM/L2
685(5)
11.2.2 HICUM/L0
690(1)
11.2.3 HICUM/L4
691(1)
11.2.4 Statistical and predictive modeling
692(8)
11.3 Model deployment for circuit design
700(15)
References
706(9)
Chapter 12 Future Trends
715(20)
12.1 Technology challenges
716(5)
12.2 Future applications
721(1)
12.3 Technology trends
722(6)
12.4 Physical limitations and device modeling
728(7)
References
730(5)
Index 735