Atjaunināt sīkdatņu piekrišanu

Compactifications, Configurations, and Cohomology [Mīkstie vāki]

Edited by , Edited by
  • Formāts: Paperback / softback, 157 pages, height x width: 254x178 mm, weight: 207 g
  • Sērija : Contemporary Mathematics
  • Izdošanas datums: 24-Dec-2023
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470469928
  • ISBN-13: 9781470469924
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 147,05 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 157 pages, height x width: 254x178 mm, weight: 207 g
  • Sērija : Contemporary Mathematics
  • Izdošanas datums: 24-Dec-2023
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470469928
  • ISBN-13: 9781470469924
Citas grāmatas par šo tēmu:
This volume contains the proceedings of the Conference on Compactifications, Configurations, and Cohomology, held from October 22-24, 2021, at Northeastern University, Boston, MA. Some of the most active and fruitful mathematical research occurs at the interface of algebraic geometry, representation theory, and topology. Noteworthy examples include the study of compactifications in three specific settings--algebraic group actions, configuration spaces, and hyperplane arrangements. These three types of compactifications enjoy common structural features, including relations to root systems, combinatorial descriptions of cohomology rings, the appearance of iterated blow-ups, the geometry of normal crossing divisors, and connections to mirror symmetry in physics. On the other hand, these compactifications are often studied independently of one another. The articles focus on new and existing connections between the aforementioned three types of compactifications, thereby setting the stage for further research. It draws on the discipline-specific expertise of all contributors, and at the same time gives a unified, self-contained reference for compactifications and related constructions in different contexts.
A. Balibanu, A quasi-Poisson structure on the multiplicative
Grothendieck-Springer resolution; P. Brosnan, Volumes of definable sets in
o-minimal expansions and affine GAGA theorems; P. Crooks and R. Roser,
Hessenberg varieties and Poisson slices; G. Denham and A. Steiner, Geometry
of logarithmic derivations of hyperplane arrangements; I. Halacheva, Shift of
argument algebras and de Concini-Procesi spaces; B. Knudsen, Projection
spaces and twisted Lie algebras; A. I. Suciu, Cohomology, Bocksteins, and
resonance varieties in characteristic 2.
Peter Crooks, Utah State University, Logan, UT.

Alexandru I. Suciu, Northeastern University, Boston, MA.