Foreword |
|
vii | |
|
1 Perspectives on the Construction and Compactification of Moduli Spaces |
|
|
|
|
|
1 | (2) |
|
1.1 The GIT approach to constructing moduli spaces |
|
|
3 | (8) |
|
1.1.1 Basic GIT and moduli |
|
|
3 | (6) |
|
1.1.2 Applications of GIT to moduli |
|
|
9 | (2) |
|
|
11 | (12) |
|
|
12 | (4) |
|
1.2.2 Applications of locally symmetric varieties |
|
|
16 | (3) |
|
1.2.3 Comparison to GIT compactifications |
|
|
19 | (4) |
|
1.3 The KSBA approach to moduli spaces |
|
|
23 | (18) |
|
|
24 | (4) |
|
1.3.2 Sic singularities are Du Bois |
|
|
28 | (1) |
|
1.3.3 Asymptotic stability, K-stability, and KSBA |
|
|
29 | (2) |
|
|
31 | (10) |
|
2 Compact Moduli Spaces of Surfaces and Exceptional Vector Bundles |
|
|
|
|
|
41 | (2) |
|
2.1 Moduli spaces of surfaces of general type |
|
|
43 | (10) |
|
2.1.1 Surfaces of general type |
|
|
43 | (1) |
|
2.1.2 Simultaneous resolution of Du Val singularities |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
2.1.7 Semi-log canonical singularities |
|
|
47 | (1) |
|
|
47 | (1) |
|
2.1.9 The index of an sic singularity |
|
|
48 | (1) |
|
2.1.10 The index-one cover |
|
|
49 | (1) |
|
2.1.11 Q-Gorenstein families of stable surfaces |
|
|
49 | (2) |
|
2.1.12 The relative dualizing sheaf |
|
|
51 | (2) |
|
2.1.13 Definition of the moduli space M k2,x of stable surfaces |
|
|
53 | (1) |
|
|
53 | (4) |
|
2.2.1 Degenerations with Wahl singularities define boundary divisors of the moduli space M k2,x |
|
|
54 | (1) |
|
2.2.2 Topology of Wahl degenerations |
|
|
55 | (2) |
|
2.3 Examples of degenerations of Wahl type |
|
|
57 | (4) |
|
2.4 Exceptional vector bundles associated to Wahl degenerations |
|
|
61 | (2) |
|
|
63 | (6) |
|
|
63 | (2) |
|
|
65 | (1) |
|
|
66 | (3) |
|
3 Notes on the Moduli Space of Stable Quotients |
|
|
|
|
|
69 | (1) |
|
3.1 Morphism spaces and Quot schemes over a fixed curve |
|
|
70 | (15) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
73 | (2) |
|
|
75 | (7) |
|
|
82 | (3) |
|
|
85 | (17) |
|
3.2.1 Definition of stable quotients and examples |
|
|
85 | (6) |
|
3.2.2 Construction of the moduli space |
|
|
91 | (2) |
|
|
93 | (2) |
|
|
95 | (1) |
|
3.2.5 Virtually smooth morphisms and comparison of invariants |
|
|
95 | (7) |
|
3.3 Stable quotient invariants |
|
|
102 | (19) |
|
3.3.1 Equivariant localization |
|
|
102 | (3) |
|
|
105 | (11) |
|
3.3.3 Hypersurface geometries |
|
|
116 | (5) |
|
3.4 Wall-crossing and other geometries |
|
|
121 | |
|
3.4.1 Variation of stability |
|
|
121 | (3) |
|
3.4.2 Quasimaps to GIT quotients |
|
|
124 | (5) |
|
3.4.3 Quasimap invariants of semi-positive GIT targets |
|
|
129 | (4) |
|
|
133 | |