Atjaunināt sīkdatņu piekrišanu

Compendium on Gradient Materials 2022 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 293 pages, height x width: 235x155 mm, weight: 474 g, 7 Illustrations, color; XIV, 293 p. 7 illus. in color., 1 Paperback / softback
  • Izdošanas datums: 29-May-2023
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031045025
  • ISBN-13: 9783031045028
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 162,93 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 191,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 293 pages, height x width: 235x155 mm, weight: 474 g, 7 Illustrations, color; XIV, 293 p. 7 illus. in color., 1 Paperback / softback
  • Izdošanas datums: 29-May-2023
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031045025
  • ISBN-13: 9783031045028
Citas grāmatas par šo tēmu:

This book offers frameworks for the material modeling of gradient materials both for finite and small deformations within elasticity, plasticity, viscosity, and thermomechanics. The first chapter focuses on balance laws and holds for all gradient materials. The next chapters are dedicated to the material modeling of second and third-order materials under finite deformations. Afterwards the scope is limited to the geometrically linear theory, i.e., to small deformations. The next chapter offers an extension of the concept of internal constraints to gradient materials. The final chapter is dedicated to incompressible viscous gradient fluids with the intention to describe, among other applications, turbulent flows, as already suggested by Saint-Venant in the middle of the 19th century.


Introduction.- Balance Laws.- Material Theory of Second-Gradient
Materials.- Material Theory of Third-Gradient Materials.- N th-Order Gradient
Materials under Small Deformations.- Second-Order Gradient Elasticity and
Plasticity under Small Deformations.- Isotropic Stiffness Hexadics.- Internal
Constraints.- Nth-Order Gradient Fluids.