Atjaunināt sīkdatņu piekrišanu

Complex Interpolation between Hilbert, Banach and Operator Spaces [Mīkstie vāki]

  • Formāts: Paperback / softback, 78 pages, weight: 147 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 01-Jan-2010
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821848429
  • ISBN-13: 9780821848425
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 84,63 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 78 pages, weight: 147 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 01-Jan-2010
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821848429
  • ISBN-13: 9780821848425
Citas grāmatas par šo tēmu:
Motivated by a question of Vincent Lafforgue, the author studies the Banach spaces X satisfying the following property: there is a function \varepsilon\to \Delta_X(\varepsilon) tending to zero with \varepsilon>0 such that every operator T\colon \ L_2\to L_2 with \|T\|\le \varepsilon that is simultaneously contractive (i.e., of norm \le 1) on L_1 and on L_\infty must be of norm \le \Delta_X(\varepsilon) on L_2(X). The author shows that \Delta_X(\varepsilon) \in O(\varepsilon^\alpha) for some \alpha>0 if X is isomorphic to a quotient of a subspace of an ultraproduct of \theta-Hilbertian spaces for some \theta>0 (see Corollary 6.7), where \theta-Hilbertian is meant in a slightly more general sense than in the author's earlier paper (1979).
Introduction 1(6)
Chapter 1 Preliminaries. Regular operators
7(6)
Chapter 2 Regular and fully contractive operators
13(4)
Chapter 3 Remarks on expanding graphs
17(4)
Chapter 4 A duality operators/classes of Banach spaces
21(6)
Chapter 5 Complex interpolation of families of Banach spaces
27(6)
Chapter 6 θ-Hilbertian spaces
33(8)
Chapter 7 Arcwise versus not arcwise
41(2)
Chapter 8 Fourier and Schur multipliers
43(4)
Chapter 9 A characterization of uniformly curved spaces
47(4)
Chapter 10 Extension property of regular operators
51(4)
Chapter 11 Generalizations
55(6)
Chapter 12 Operator space case
61(8)
Chapter 13 Generalizations (Operator space case)
69(4)
Chapter 14 Examples with the Haagerup tensor product
73(2)
References 75