Atjaunināt sīkdatņu piekrišanu

Complex Structure and Dynamics of the Heart 2015 ed. [Hardback]

  • Formāts: Hardback, 204 pages, height x width: 235x155 mm, weight: 4557 g, 47 Illustrations, color; 22 Illustrations, black and white; XV, 204 p. 69 illus., 47 illus. in color., 1 Hardback
  • Sērija : Springer Theses
  • Izdošanas datums: 08-Jan-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319122312
  • ISBN-13: 9783319122311
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 118,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 139,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 204 pages, height x width: 235x155 mm, weight: 4557 g, 47 Illustrations, color; 22 Illustrations, black and white; XV, 204 p. 69 illus., 47 illus. in color., 1 Hardback
  • Sērija : Springer Theses
  • Izdošanas datums: 08-Jan-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319122312
  • ISBN-13: 9783319122311
Citas grāmatas par šo tēmu:

This award-winning thesis investigates the mechanisms underlying cardiac arrhythmia development and termination from an entirely new perspective. By viewing the heart as a complex system, the author uses theoretical tools from nonlinear dynamics combined with numerical simulations and experiments to achieve insights into the relationship between its structure and dynamics, thereby paving the way towards innovative low-energy defibrillation strategies. The work tackles, among other things: the effect of substrate heterogeneity on the spatial-temporal dynamics of cardiac arrhythmias and ways in which weak pulsed electric fields can be used to control these dynamics in heterogeneous cardiac tissue. The long-term vision of this research is to replace the current strategy of applying painful and sometimes tissue damaging electric shock – currently the only reliable way to terminate life-threatening fibrillation – by a more subtle but equally effective intervention. The book maps out a number of promising research directions for biophysicists and medical researchers working on the origins and treatment of cardiac arrhythmias.

1 Introduction
1(24)
1.1 Anatomy of the Heart
3(2)
1.2 Physiology of the Heart
5(5)
1.2.1 Cardiomyocytes
7(2)
1.2.2 Cell-to-Cell Coupling
9(1)
1.3 Structural Heterogeneity
10(1)
1.4 Arrhythmias
11(1)
1.5 Antiarrhythmic Therapies
12(2)
1.6 Complexity in Structure and Dynamics
14(1)
1.7 This Thesis
15(10)
References
18(7)
2 Methods
25(60)
2.1 Mathematical Background
25(33)
2.1.1 Single Cell Dynamics
26(2)
2.1.2 Bi-domain Description of Cardiac Tissue
28(2)
2.1.3 Mono-domain Descriptions of Cardiac Tissue
30(3)
2.1.4 Anisotropy
33(1)
2.1.5 The Phase-Field Method
33(9)
2.1.6 Models
42(6)
2.1.7 Spiral Tips and Phase Singularities
48(2)
2.1.8 Lyapunov Stability Analysis
50(8)
2.2 Numerical Implementation
58(15)
2.2.1 Time Stepping Scheme
58(1)
2.2.2 Diffusion Term
59(5)
2.2.3 Boundary Conditions
64(1)
2.2.4 Stability Considerations
65(2)
2.2.5 Spiral Tip Detection
67(1)
2.2.6 Lyapunov Exponents and Vectors
68(3)
2.2.7 Hardware, Software, Parallelization
71(2)
2.3 Experimental Methods
73(12)
2.3.1 Setup and Tissue Preparation
73(1)
2.3.2 Optical Imaging
74(2)
2.3.3 Electric-Field Stimulation Experiments
76(1)
2.3.4 Signal Processing: Activation Maps
77(3)
References
80(5)
3 Results
85(86)
3.1 Quantification of Dynamical Complexity in Heterogeneous Excitable Media
85(34)
3.1.1 Plane Waves
86(7)
3.1.2 Rigidly Rotating Spiral Waves
93(3)
3.1.3 Multiple Spiral Waves
96(3)
3.1.4 Transition to Meandering
99(3)
3.1.5 Circular Heterogeneities
102(4)
3.1.6 Random Heterogeneities
106(5)
3.1.7 Heterogeneities in Spatio-Temporal Chaos
111(6)
3.1.8 Brief Summary
117(2)
3.2 Sensitivity of Curved Tissue Boundaries to Electric-Field Stimulation
119(31)
3.2.1 Theoretical Framework
120(1)
3.2.2 Setup of Numerical Simulations
121(1)
3.2.3 Generic Properties of Induced Membrane Potential Changes
122(1)
3.2.4 Tissue Domains of Different Dimension
123(1)
3.2.5 Curvature Dependence in Cell Culture Experiments
124(1)
3.2.6 Definition of Boundary Curvature
125(2)
3.2.7 Flat Boundaries
127(1)
3.2.8 Circular Boundaries
128(7)
3.2.9 Semi-circular Protuberances
135(1)
3.2.10 Parabolic Boundaries
136(3)
3.2.11 Inherently Three-Dimensional Boundaries
139(1)
3.2.12 Boundary Effects in Full Numerical Simulations
140(2)
3.2.13 Influence of Finite Pulse Duration
142(7)
3.2.14 Brief Summary
149(1)
3.3 Heterogeneity-Induced Wave Sources in Low-Energy Defibrillation
150(21)
3.3.1 Hypothesis
150(1)
3.3.2 Theoretical Framework
151(5)
3.3.3 Blood Vessel Size Distributions
156(1)
3.3.4 Activation Times
157(2)
3.3.5 Linking Structure and Function
159(4)
3.3.6 Universality of Activation Time Scaling
163(2)
3.3.7 Brief Summary
165(2)
References
167(4)
4 Conclusion
171(16)
4.1 Summary
171(4)
4.2 Discussion and Outlook
175(7)
4.3 Concluding Remarks
182(5)
References
184(3)
Appendix A Modeling Details 187(4)
Appendix B Supplementary Data 191(4)
Appendix C MediaSim---An Open Framework for Simulating Extended Systems 195(2)
Curriculum Vitae 197(6)
Index 203
Dr. Philip Bittihn studied physics at the Georg-August-Universität Göttingen as a scholar of the Studienstiftung des deutschen Volkes (German National Academic Foundation). In 2009, he obtained his diploma with honors from the university, before joining the MPRG Biomedical Physics at the Max Planck Institute for Dynamics and Self-Organization, Göttingen. He received his PhD in June 2013 for theoretical and experimental work on the complex structure and dynamics of the heart and is currently a postdoctoral scholar at the BioCircuits Institute, University of California, San Diego. His interests include the nonlinear dynamics and emergent phenomena of biological systems, numerical simulations, partial differential equations and experimental data analysis.