Atjaunināt sīkdatņu piekrišanu

E-grāmata: Complex Variable Boundary Element Method

  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Engineering 9
  • Izdošanas datums: 12-Mar-2013
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642823619
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Engineering 9
  • Izdošanas datums: 12-Mar-2013
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642823619

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The Complex Variable Boundary Element Method or CVBEM is a generalization of the Cauchy integral formula into a boundary integral equation method or BIEM. This generalization allows an immediate and extremely valuable transfer of the modeling techniques used in real variable boundary integral equation methods (or boundary element methods) to the CVBEM. Consequently, modeling techniques for dissimilar materials, anisotropic materials, and time advancement, can be directly applied without modification to the CVBEM. An extremely useful feature offered by the CVBEM is that the pro­ duced approximation functions are analytic within the domain enclosed by the problem boundary and, therefore, exactly satisfy the two-dimensional Laplace equation throughout the problem domain. Another feature of the CVBEM is the integrations of the boundary integrals along each boundary element are solved exactly without the need for numerical integration. Additionally, the error analysis of the CVBEM approximation functions is workable by the easy-to-understand concept of relative error. A sophistication of the relative error analysis is the generation of an approximative boundary upon which the CVBEM approximation function exactly solves the boundary conditions of the boundary value problem' (of the Laplace equation), and the goodness of approximation is easily seen as a closeness-of-fit between the approximative and true problem boundaries.

Papildus informācija

Springer Book Archives
1: Flow Processes and Mathematical Models.- 1.0 Introduction.- 1.1 Ideal
Fluid Flow.- 1.2 Steady State Heat Flow.- 1.3 Saturated Groundwater Flow.-
1.4 Steady State Fickian Diffusion.- 1.5 Use of the Laplace Equation.- 2: A
Review of Complex Variable Theory.- 2.0 Introduction.- 2.1 Preliminary
Definitions.- 2.2 Polar Forms of Complex Numbers.- 2.3 Limits and
Continuity.- 2.4 Derivatives.- 2.5 The Cauchy-Riemann Equations and Harmonic
Functions.- 2.6 Complex Line Integration.- 2.7 Cauchys Integral Theorem.-
2.8 The Cauchy Integral Formula.- 2.9 Taylor Series.- 2.10 Program 1: A
Complex Polynomial Approximation Method.- 2.11 Potential Theory and Analytic
Functions.- 3: Mathematical Development of the Complex Variable Boundary
Element Method.- 3.0 Introduction.- 3.1 Basic Definitions.- 3.2 Linear Global
Trial Function Characteristics.- 3.3 The H1 Approximation Function.- 3.4
Higher Order Hk Approximation Functions.- 3.5 Engineering Applications.- 4:
The Complex Variable Boundary Element Method.- 4.0 Introduction.- 4.1 A
Complex Variable Boundary Element Approximation Model.- 4.2 The Analytic
Function Defined by the Approximator $$\rm \hat{\omega }$$(z).- 4.3 Program
2: A Linear Basis Function Approximator $$\rm \hat{\omega }$$(z).- 4.4 A
Constant Boundary Element Method.- 4.5 The Complex Variable Boundary Element
Method (CVBEM).- 5: Reducing CVBEM Approximation Relative Error.- 5.0
Introduction.- 5.1 Application of the CVBEM to the Unit Circle.- 5.2
Approximation Error from the CVBEM.- 5.3 A CVBEM Modeling Strategy to Reduce
Approximation Error.- 5.4 A Modified CVBEM Numerical Model.- 5.5 Program 3: A
Modified CVBEM Numerical Model.- 5.6 Determining some Useful Relative Error
Bounds for the CVBEM.- 6: Advanced Topics.- 6.0 Introduction.- 6.1 Expansion
of the HkApproximation Function.- 6.2 Upper Half Plane Boundary Value
Problems.- 6.3 Sources and Sinks.- 6.4 The Approximative Boundary for Error
Analysis.- 6.5 Estimating Boundary Spatial Coordinates.