Preface |
|
xiii | |
|
|
1 | (5) |
|
1.1 Motivation and objectives |
|
|
1 | (1) |
|
|
2 | (4) |
|
2 Overview of wireless networks |
|
|
6 | (45) |
|
2.1 Wireless channel models |
|
|
6 | (7) |
|
|
6 | (5) |
|
2.1.2 Interference channel |
|
|
11 | (2) |
|
2.2 Categorization of wireless networks |
|
|
13 | (23) |
|
2.2.1 3G cellular networks and beyond |
|
|
13 | (4) |
|
|
17 | (5) |
|
|
|
2.2.4 Wireless personal area networks |
|
|
22 | (6) |
|
2.2.5 Wireless ad hoc networks |
|
|
28 | (4) |
|
2.2.6 Wireless sensor networks |
|
|
32 | (4) |
|
2.3 Advanced wireless technology |
|
|
36 | (15) |
|
|
36 | (3) |
|
2.3.2 Multiple antenna system |
|
|
39 | (2) |
|
|
41 | (2) |
|
2.3.4 Scheduling and multiple access |
|
|
43 | (2) |
|
2.3.5 Wireless positioning and localization |
|
|
45 | (6) |
|
Part I Compressive Sensing Technique |
|
|
|
3 Compressive sensing framework |
|
|
51 | (18) |
|
|
51 | (5) |
|
3.2 Traditional sensing versus compressive sensing |
|
|
56 | (1) |
|
3.3 Sparse representation |
|
|
57 | (3) |
|
3.3.1 Extensions of sparse models |
|
|
59 | (1) |
|
3.4 CS encoding and decoding |
|
|
60 | (7) |
|
|
67 | (2) |
|
4 Sparse optimization algorithms |
|
|
69 | (49) |
|
4.1 A brief introduction to optimization |
|
|
70 | (3) |
|
4.2 Sparse optimization models |
|
|
73 | (1) |
|
|
74 | (2) |
|
|
76 | (3) |
|
4.4.1 Generalizations of shrinkage |
|
|
78 | (1) |
|
4.5 Prox-linear algorithms |
|
|
79 | (4) |
|
4.5.1 Forward-backward operator splitting |
|
|
80 | (1) |
|
|
81 | (2) |
|
|
83 | (1) |
|
|
83 | (10) |
|
|
84 | (1) |
|
4.6.2 The augmented Lagrangian method |
|
|
85 | (1) |
|
|
86 | (2) |
|
4.6.4 Bregman iterations and denoising |
|
|
88 | (2) |
|
4.6.5 Linearized Bregman and augmented models |
|
|
90 | (2) |
|
4.6.6 Handling complex data and variables |
|
|
92 | (1) |
|
4.7 Alternating direction method of multipliers |
|
|
93 | (10) |
|
|
94 | (2) |
|
4.7.2 Applications of ADM in sparse optimization |
|
|
96 | (4) |
|
4.7.3 Applications in distributed optimization |
|
|
100 | (2) |
|
4.7.4 Applications in decentralized optimization |
|
|
102 | (1) |
|
|
102 | (1) |
|
4.8 (Block) coordinate minimization and gradient descent |
|
|
103 | (2) |
|
4.9 Homotopy algorithms and parametric quadratic programming |
|
|
105 | (2) |
|
4.10 Continuation, varying step sizes, and line search |
|
|
107 | (2) |
|
4.11 Non-convex approaches for sparse optimization |
|
|
109 | (1) |
|
|
110 | (4) |
|
4.12.1 Greedy pursuit algorithms |
|
|
110 | (2) |
|
4.12.2 Iterative support detection |
|
|
112 | (1) |
|
|
113 | (1) |
|
4.13 Algorithms for low-rank matrices |
|
|
114 | (1) |
|
4.14 How to choose an algorithm |
|
|
115 | (3) |
|
5 CS analog-to-digital converter |
|
|
118 | (23) |
|
5.1 Traditional ADC basics |
|
|
118 | (7) |
|
|
118 | (2) |
|
|
120 | (1) |
|
5.1.3 Practical implementation |
|
|
121 | (4) |
|
5.2 Random demodulator ADC |
|
|
125 | (2) |
|
|
125 | (1) |
|
|
125 | (2) |
|
5.3 Modulated wideband converter ADC |
|
|
127 | (2) |
|
|
127 | (2) |
|
5.3.2 Comparison with random demodulator |
|
|
129 | (1) |
|
|
129 | (6) |
|
|
130 | (1) |
|
|
130 | (1) |
|
5.4.3 X-ADC and hardware implementation |
|
|
131 | (1) |
|
5.4.4 X-DSP and subspace algorithms |
|
|
132 | (3) |
|
|
135 | (3) |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
136 | (1) |
|
5.5.4 Miscellaneous literature |
|
|
136 | (2) |
|
|
138 | (3) |
|
Part II CS-Based Wireless Communication |
|
|
|
6 Compressed channel estimation |
|
|
141 | (32) |
|
6.1 Introduction and motivation |
|
|
141 | (2) |
|
6.2 Multipath channel estimation |
|
|
143 | (3) |
|
6.2.1 Channel model and training-based method |
|
|
143 | (1) |
|
6.2.2 Compressed channel sensing |
|
|
143 | (3) |
|
6.3 OFDM channel estimation |
|
|
146 | (13) |
|
|
147 | (1) |
|
6.3.2 Compressive sensing OFDM channel estimator |
|
|
148 | (3) |
|
6.3.3 Numerical algorithm |
|
|
151 | (3) |
|
6.3.4 Numerical simulations |
|
|
154 | (5) |
|
6.4 Underwater acoustic channel estimation |
|
|
159 | (3) |
|
|
159 | (1) |
|
6.4.2 Compressive sensing algorithms |
|
|
160 | (2) |
|
6.5 Random field estimation |
|
|
162 | (9) |
|
|
163 | (3) |
|
6.5.2 Matrix completion algorithm |
|
|
166 | (2) |
|
|
168 | (3) |
|
6.6 Other channel estimation methods |
|
|
171 | (1) |
|
6.6.1 Blind channel estimation |
|
|
171 | (1) |
|
|
171 | (1) |
|
6.6.3 Group sparsity method |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
173 | (20) |
|
7.1 A brief introduction to UWB |
|
|
173 | (2) |
|
7.1.1 History and applications |
|
|
173 | (1) |
|
7.1.2 Characteristics of UWB |
|
|
174 | (1) |
|
7.1.3 Mathematical model of UWB |
|
|
174 | (1) |
|
|
175 | (5) |
|
7.2.1 Transmitter side compression |
|
|
175 | (2) |
|
7.2.2 Receiver side compression |
|
|
177 | (3) |
|
7.3 Reconstruction of UWB |
|
|
180 | (9) |
|
7.3.1 Block reconstruction |
|
|
180 | (4) |
|
7.3.2 Bayesian reconstruction |
|
|
184 | (2) |
|
7.3.3 Computational issue |
|
|
186 | (3) |
|
7.4 Direct demodulation in UWB communications |
|
|
189 | (3) |
|
7.4.1 Transceiver structures |
|
|
189 | (1) |
|
|
190 | (2) |
|
|
192 | (1) |
|
|
193 | (21) |
|
8.1 Introduction to positioning |
|
|
193 | (1) |
|
8.2 Direct application of compressive sensing |
|
|
194 | (11) |
|
|
194 | (1) |
|
8.2.2 Positioning in WLAN |
|
|
195 | (3) |
|
8.2.3 Positioning in cognitive radio |
|
|
198 | (5) |
|
8.2.4 Dynamic compressive sensing |
|
|
203 | (2) |
|
8.3 Indirect application of compressive sensing |
|
|
205 | (7) |
|
8.3.1 UWB positioning system |
|
|
205 | (2) |
|
8.3.2 Space-time compressive sensing |
|
|
207 | (3) |
|
8.3.3 Joint compressive sensing and TDOA |
|
|
210 | (2) |
|
|
212 | (2) |
|
|
214 | (18) |
|
|
214 | (1) |
|
9.2 Introduction to multiuser detection |
|
|
215 | (6) |
|
9.2.1 System model for CDMA |
|
|
216 | (1) |
|
9.2.2 Comparison between multiuser detection and compressive sensing |
|
|
216 | (1) |
|
9.2.3 Various algorithms of multiuser detection |
|
|
217 | (1) |
|
9.2.4 Optimal multiuser detector |
|
|
217 | (4) |
|
9.3 Multiple access in cellular systems |
|
|
221 | (6) |
|
|
221 | (5) |
|
|
226 | (1) |
|
9.4 Multiple access in sensor networks |
|
|
227 | (4) |
|
|
227 | (2) |
|
|
229 | (2) |
|
|
231 | (1) |
|
10 Cognitive radio networks |
|
|
232 | (36) |
|
|
232 | (2) |
|
|
234 | (2) |
|
10.3 Compressive sensing-based collaborative spectrum sensing |
|
|
236 | (15) |
|
|
236 | (1) |
|
10.3.2 CSS matrix completion algorithm |
|
|
237 | (3) |
|
10.3.3 CSS joint sparsity recovery algorithm |
|
|
240 | (3) |
|
|
243 | (1) |
|
|
244 | (7) |
|
|
251 | (8) |
|
|
252 | (1) |
|
10.4.2 Dynamic recovery algorithm |
|
|
253 | (2) |
|
|
255 | (4) |
|
10.5 Joint consideration with localization |
|
|
259 | (8) |
|
|
259 | (2) |
|
10.5.2 Joint spectrum sensing and localization algorithm |
|
|
261 | (3) |
|
|
264 | (3) |
|
|
267 | (1) |
References |
|
268 | (23) |
Index |
|
291 | |