Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computability and Complexity Theory

(Boston University),
  • Formāts: PDF+DRM
  • Sērija : Texts in Computer Science
  • Izdošanas datums: 09-Mar-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781475735444
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 85,66 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Texts in Computer Science
  • Izdošanas datums: 09-Mar-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781475735444
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The theory of computing provides computer science with concepts, models, and formalisms for reasoning about the resources needed to carry out computations, and the efficiency of the computations. It provides tools to measure the difficulty of combinatorial problems both absolutely, and in comparison with other problems. This book contains material that should be core knowledge in the theory of computation for all graduate students in computer science. This comprehensive introduction begins with classical computability theory and develops complexity theory on top of that.

This volume introduces materials that are the core knowledge in the theory of computation. The book is self-contained, with a preliminary chapter describing key mathematical concepts and notations and subsequent chapters moving from the qualitative aspects of classical computability theory to the quantitative aspects of complexity theory. Dedicated chapters on undecidability, NP-completeness, and relative computability round off the work, which focuses on the limitations of computability and the distinctions between feasible and intractable.Topics and features:*Concise, focused materials cover the most fundamental concepts and results in the field of modern complexity theory, including the theory of NP-completeness, NP-hardness, the polynomial hierarchy, and complete problems for other complexity classes*Contains information that otherwise exists only in research literature and presents it in a unified, simplified manner; for example, about complements of complexity classes, search problems, and intermediate problems in NP*Provides key mathematical background information, including sections on logic and number theory and algebra*Supported by numerous exercises and supplementary problems for reinforcement and self-study purposes With its accessibility and well-devised organization, this text/reference is an excellent resource and guide for those looking to develop a solid grounding in the theory of computing. Beginning graduates, advanced undergraduates, and professionals involved in theoretical computer science, complexity theory, and computability will find the book an essential and practical learning tool.

Recenzijas

From the reviews: "The difference between this new introductory graduate textbook in theoretical computer science and other texts is that the authors have chosen to concentrate on computability theory and computational complexity theory. They motivate this focus by pointing out that most students have been introduced to the theory of automata and formal languages as undergraduates. The topics are treated in depth and in full formal detail. Explicit homework assignments are tightly integrated into the exposition of the material." --Computing Reviews "This book is intended for use in a modern graduate course in the theory of computing. ! Mainly all old classical complexity results as well as a relatively recent result that space-bounded classes are closed under complements are included into the book. The textbook is self-contained. A list of useful homework problems is appended to each chapter. The book is well written and is recommended to students as well as specialists in theoretical computer science." (Anatoly V. Anisimov, Zentralblatt MATH, Vol. 1033 (8), 2004) "This book is a solid textbook suited for one- or two-semester graduate courses on the theory of computing. !The authors are two leading researchers in the field of theoretical computer sciences, most notably complexity theory. ! This textbook is an excellent resource and guide for those looking to develop a solid grounding in the theory of computing. Beginning graduates, advanced undergraduates and professionals involved in theoretical computer science, complexity theory and computability will find this book an essential and practical learning tool." (Andre Grosse, The Computer Journal, Vol. 45 (4), 2002)

Preface vii
Preliminaries
1(21)
Words and Languages
1(1)
K-adic Representation
2(1)
Partial Functions
3(1)
Graphs
4(2)
Propositional Logic
6(2)
Boolean Functions
8(1)
Cardinality
8(3)
Ordered Sets
10(1)
Elementary Algebra
11(11)
Rings and Fields
11(4)
Groups
15(2)
Number Theory
17(5)
Introduction to Computability
22(19)
Turing Machines
23(3)
Turing-Machine Concepts
26(2)
Variations of Turing Machines
28(6)
Multitape Turing Machines
29(2)
Nondeterministic Turing Machines
31(3)
Church's Thesis
34(2)
RAMs
36(5)
Turing Machines for RAMS
39(2)
Undecidability
41(31)
Decision Problems
41(2)
Undecidable Problems
43(3)
Pairing Functions
46(1)
Computably Enumerable Sets
47(3)
Halting Problem, Reductions, and Complete Sets
50(3)
Complete Problems
52(1)
S-m-n Theorem
53(2)
Recursion Theorem
55(2)
Rice's Theorem
57(2)
Turing Reduction and Oracle Turing Machines
59(7)
Recursion Theorem, Continued
66(3)
References
69(1)
Additional Homework Problems
70(2)
Introduction to Complexity Theory
72(6)
Complexity Classes and Complexity Measures
74(3)
Computing Functions
76(1)
Prerequisites
77(1)
Basic Results of Complexity Theory
78(44)
Linear Compression and Speedup
80(6)
Constructible Functions
86(4)
Simultaneous Simulation
87(3)
Tape Reduction
90(7)
Inclusion Relationships
97(10)
Relations between the Standard Classes
105(2)
Separation Results
107(4)
Translation Techniques and Padding
111(4)
Tally Languages
113(2)
Relations between the Standard Classes---Continued
115(5)
Complements of Complexity Classes: The Immerman-Szelepcsenyi Theorem
116(4)
Additional Homework Problems
120(2)
Nondeterminism and NP-Completeness
122(23)
Characterizing NP
123(1)
The Class P
124(2)
Enumerations
126(2)
NP-Completeness
128(2)
The Cook-Levin Theorem
130(6)
More NP-Complete Problems
136(6)
The Diagonal Set Is NP-Complete
137(1)
Some Natural NP-Complete Problems
138(4)
Additional Homework Problems
142(3)
Relative Computability
145(36)
NP-Hardness
147(4)
Search Problems
151(2)
The Structure of NP
153(9)
Composite Number and Graph Isomorphism
158(3)
Reflection
161(1)
The Polynomial Hierarchy
162(8)
Complete Problems for Other Complexity Classes
170(9)
PSPACE
170(4)
Exponential Time
174(1)
Polynomial Time and Logarithmic Space
175(4)
A Note on Provably Intractable Problems
179(1)
Additional Homework Problems
179(2)
References 181(6)
Author Index 187(4)
Subject Index 191