Preface |
|
xvii | |
Contributors |
|
xxiii | |
List of Figures |
|
xxv | |
List of Tables |
|
xxxi | |
1 Introduction |
|
1 | (72) |
|
|
|
1.1 R for Actuarial Science? |
|
|
2 | (9) |
|
1.1.1 From Actuarial Science to Computational Actuarial Science |
|
|
2 | (2) |
|
1.1.2 The S Language and the R Environment |
|
|
4 | (2) |
|
1.1.3 Vectors and Matrices in Actuarial Computations |
|
|
6 | (1) |
|
|
6 | (2) |
|
1.1.5 S3 versus S4 Classes |
|
|
8 | (3) |
|
1.1.6 R Codes and Efficiency |
|
|
11 | (1) |
|
1.2 Importing and Creating Various Objects, and Datasets in R |
|
|
11 | (23) |
|
1.2.1 Simple Objects in R and Workspace |
|
|
12 | (1) |
|
1.2.2 More Complex Objects in R: From Vectors to Lists |
|
|
13 | (9) |
|
|
13 | (4) |
|
1.2.2.2 Matrices and Arrays |
|
|
17 | (4) |
|
|
21 | (1) |
|
1.2.3 Reading csv or txt Files |
|
|
22 | (4) |
|
1.2.4 Importing Excel® Files and SAS® Tables |
|
|
26 | (1) |
|
1.2.5 Characters, Factors and Dates with R |
|
|
27 | (6) |
|
1.2.5.1 Strings and Characters |
|
|
27 | (2) |
|
1.2.5.2 Factors and Categorical Variables |
|
|
29 | (2) |
|
|
31 | (2) |
|
1.2.6 Symbolic Expressions in R |
|
|
33 | (1) |
|
1.3 Basics of the R Language |
|
|
34 | (28) |
|
|
35 | (2) |
|
1.3.2 From Control Flow to "Personal" Functions |
|
|
37 | (6) |
|
1.3.2.1 Control Flow: Looping, Repeating and Conditioning |
|
|
37 | (1) |
|
1.3.2.2 Writing Personal Functions |
|
|
38 | (5) |
|
1.3.3 Playing with Functions (in a Life Insurance Context) |
|
|
43 | (1) |
|
1.3.4 Dealing with Errors |
|
|
44 | (1) |
|
1.3.5 Efficient Functions |
|
|
45 | (4) |
|
1.3.6 Numerical Integration |
|
|
49 | (3) |
|
1.3.7 Graphics with R: A Short Introduction |
|
|
52 | (10) |
|
1.3.7.1 Basic Ready-Made Graphs |
|
|
52 | (1) |
|
1.3.7.2 A Simple Graph with Lines and Curves |
|
|
53 | (2) |
|
1.3.7.3 Graphs That Can Be Obtained from Standard Functions |
|
|
55 | (2) |
|
1.3.7.4 Adding Shaded Area to a Graph |
|
|
57 | (1) |
|
|
58 | (1) |
|
1.3.7.6 More Complex Graphs |
|
|
59 | (3) |
|
|
62 | (6) |
|
|
62 | (1) |
|
|
63 | (2) |
|
1.4.3 Interfacing R and C/C++ |
|
|
65 | (3) |
|
1.4.4 Integrating R in Excel® |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
69 | (4) |
I Methodology |
|
73 | (214) |
|
2 Standard Statistical Inference |
|
|
75 | (52) |
|
|
2.1 Probability Distributions in Actuarial Science |
|
|
76 | (13) |
|
2.1.1 Continuous Distributions |
|
|
76 | (6) |
|
2.1.2 Discrete Distributions |
|
|
82 | (2) |
|
2.1.3 Mixed-Type Distributions |
|
|
84 | (2) |
|
2.1.4 S3 versus S4 Types for Distribution |
|
|
86 | (3) |
|
|
89 | (4) |
|
2.2.1 Maximum Likelihood Estimation |
|
|
90 | (1) |
|
2.2.2 Moment Matching Estimation |
|
|
91 | (1) |
|
2.2.3 Quantile Matching Estimation |
|
|
91 | (1) |
|
2.2.4 Maximum Goodness-of-Fit Estimation |
|
|
92 | (1) |
|
|
93 | (6) |
|
2.3.1 Histogram and Empirical Densities |
|
|
93 | (1) |
|
2.3.2 Distribution Function Plot |
|
|
93 | (2) |
|
|
95 | (1) |
|
2.3.4 Goodness-of-Fit Statistics and Tests |
|
|
96 | (1) |
|
2.3.5 Skewness-Kurtosis Graph |
|
|
97 | (2) |
|
2.4 Linear Regression: Introducing Covariates in Statistical Inference |
|
|
99 | (4) |
|
2.4.1 Using Covariates in the Statistical Framework |
|
|
99 | (2) |
|
2.4.2 Linear Regression Model |
|
|
101 | (1) |
|
2.4.3 Inference in a Linear Model |
|
|
102 | (1) |
|
2.5 Aggregate Loss Distribution |
|
|
103 | (10) |
|
2.5.1 Computation of the Aggregate Loss Distribution |
|
|
104 | (3) |
|
|
107 | (3) |
|
2.5.3 From Poisson Processes to Levy Processes |
|
|
110 | (2) |
|
|
112 | (1) |
|
2.6 Copulas and Multivariate Distributions |
|
|
113 | (9) |
|
2.6.1 Definition of Copulas |
|
|
113 | (1) |
|
2.6.2 Archimedean Copulas |
|
|
114 | (1) |
|
|
114 | (1) |
|
2.6.4 Properties and Extreme Copulas |
|
|
115 | (1) |
|
2.6.5 Copula Fitting Methods |
|
|
116 | (1) |
|
2.6.6 Application and Copula Selection |
|
|
117 | (5) |
|
|
122 | (5) |
|
|
127 | (38) |
|
|
|
|
128 | (2) |
|
3.1.1 A Formal Introduction |
|
|
128 | (1) |
|
3.1.2 Two Kinds of Probability |
|
|
129 | (1) |
|
3.1.3 Working with Subjective Probabilities in Real Life |
|
|
129 | (1) |
|
3.1.4 Bayesianism for Actuaries |
|
|
130 | (1) |
|
|
130 | (11) |
|
3.2.1 A Historical Perspective |
|
|
131 | (1) |
|
3.2.2 Motivation on Small Samples |
|
|
132 | (4) |
|
3.2.3 Black Swans and Bayesian Methodology |
|
|
136 | (1) |
|
3.2.4 Bayesian Models in Portfolio Management and Finance |
|
|
137 | (1) |
|
3.2.5 Relation to Buhlmann Credibility |
|
|
138 | (2) |
|
3.2.6 Noninformative Priors |
|
|
140 | (1) |
|
3.3 Computational Considerations |
|
|
141 | (11) |
|
3.3.1 Curse of Dimensionality |
|
|
141 | (2) |
|
3.3.2 Monte Carlo Integration |
|
|
143 | (1) |
|
3.3.3 Markov Chain Monte Carlo |
|
|
144 | (2) |
|
|
146 | (3) |
|
|
149 | (3) |
|
3.3.6 Computational Conclusion and Specific Packages |
|
|
152 | (1) |
|
|
152 | (5) |
|
3.4.1 Linear Model from a Bayesian Perspective |
|
|
152 | (2) |
|
3.4.2 Extension to Generalized Linear Models |
|
|
154 | (2) |
|
3.4.3 Extension for Hierarchical Structures |
|
|
156 | (1) |
|
3.5 Interpretation of Bayesianism |
|
|
157 | (5) |
|
3.5.1 Bayesianism and Decision Theory |
|
|
159 | (1) |
|
3.5.2 Context of Discovery versus Context of Justification |
|
|
159 | (1) |
|
3.5.3 Practical Classical versus Bayesian Statistics Revisited |
|
|
160 | (2) |
|
|
162 | (1) |
|
|
163 | (2) |
|
|
165 | (42) |
|
|
|
4.1 Introduction and Motivation |
|
|
165 | (10) |
|
|
166 | (2) |
|
4.1.2 Description of the Data |
|
|
168 | (1) |
|
|
169 | (4) |
|
4.1.4 Recoding the Variables |
|
|
173 | (1) |
|
4.1.5 Training and Testing Samples |
|
|
174 | (1) |
|
|
175 | (14) |
|
4.2.1 Inference in the Logistic Model |
|
|
175 | (3) |
|
4.2.2 Logistic Regression on Categorical Variates |
|
|
178 | (1) |
|
4.2.3 Step-by-Step Variable Selection |
|
|
179 | (1) |
|
4.2.3.1 Forward Algorithm |
|
|
180 | (1) |
|
4.2.3.2 Backward Algorithm |
|
|
181 | (2) |
|
|
183 | (3) |
|
4.2.5 Smoothing Continuous Covariates |
|
|
186 | (2) |
|
4.2.6 Nearest-Neighbor Method |
|
|
188 | (1) |
|
4.3 Penalized Logistic Regression: From Ridge to Lasso |
|
|
189 | (4) |
|
|
190 | (1) |
|
|
191 | (2) |
|
4.4 Classification and Regression Trees |
|
|
193 | (8) |
|
|
193 | (3) |
|
4.4.2 Criteria and Impurity |
|
|
196 | (5) |
|
4.5 From Classification Trees to Random Forests |
|
|
201 | (7) |
|
|
202 | (1) |
|
|
203 | (1) |
|
|
204 | (3) |
|
|
207 | (50) |
|
|
|
|
Luis Gustavo Silva e Silva |
|
|
|
208 | (2) |
|
|
208 | (1) |
|
5.1.2 Random Surface Data |
|
|
208 | (1) |
|
5.1.3 Spatial Interaction Data |
|
|
209 | (1) |
|
|
209 | (1) |
|
5.1.5 Focus of This Chapter |
|
|
210 | (1) |
|
5.2 Spatial Analysis and GIS |
|
|
210 | (3) |
|
|
213 | (10) |
|
5.3.1 SpatialPoints Subclass |
|
|
214 | (2) |
|
5.3.2 SpatialPointsDataFrame Subclass |
|
|
216 | (3) |
|
5.3.3 SpatialPolygons Subclass |
|
|
219 | (1) |
|
5.3.3.1 First Elementary Example |
|
|
219 | (1) |
|
|
221 | (2) |
|
5.3.4 SpatialPolygonsDataFrame Subclass |
|
|
223 | (1) |
|
|
223 | (2) |
|
5.5 Reading Maps and Data in R |
|
|
225 | (3) |
|
5.6 Exploratory Spatial Data Analysis |
|
|
228 | (11) |
|
|
229 | (1) |
|
|
230 | (1) |
|
5.6.3 Using the RgoogleMaps Package |
|
|
231 | (4) |
|
5.6.4 Generating KML Files |
|
|
235 | (1) |
|
5.6.4.1 Adding a Legend to a KML File |
|
|
236 | (3) |
|
5.7 Testing for Spatial Correlation |
|
|
239 | (4) |
|
5.7.1 Neighborhood Matrix |
|
|
239 | (2) |
|
5.7.2 Other Neighborhood Options |
|
|
241 | (1) |
|
|
242 | (1) |
|
5.8 Spatial Car Accident Insurance Analysis |
|
|
243 | (7) |
|
5.9 Spatial Car Accident Insurance Shared Analysis |
|
|
250 | (5) |
|
|
255 | (2) |
|
6 Reinsurance and Extremal Events |
|
|
257 | (30) |
|
|
|
|
257 | (1) |
|
|
258 | (5) |
|
|
259 | (1) |
|
6.2.2 Exceedances above a Threshold |
|
|
260 | (2) |
|
|
262 | (1) |
|
|
263 | (15) |
|
|
264 | (1) |
|
|
265 | (1) |
|
6.3.2.1 Generalized Extreme Value Distribution |
|
|
265 | (1) |
|
6.3.2.2 Poisson-Generalized Pareto Model |
|
|
267 | (1) |
|
|
269 | (1) |
|
6.3.2.4 Other Tail Index Estimates |
|
|
271 | (1) |
|
6.3.3 Checking for the Asymptotic Regime Assumption |
|
|
272 | (1) |
|
|
273 | (1) |
|
6.3.3.2 Parameter Stability |
|
|
274 | (1) |
|
6.3.4 Quantile Estimation |
|
|
275 | (3) |
|
|
278 | (4) |
|
6.4.1 Quantile Quantile Plot |
|
|
278 | (1) |
|
6.4.2 Probability-Probability Plot |
|
|
279 | (1) |
|
|
280 | (2) |
|
|
282 | (7) |
|
6.5.1 Modeling Occurence and Frequency |
|
|
283 | (1) |
|
6.5.2 Modeling Individual Losses |
|
|
284 | (3) |
II Life Insurance |
|
287 | (120) |
|
|
289 | (30) |
|
|
|
289 | (1) |
|
7.2 Financial Mathematics Review |
|
|
290 | (6) |
|
7.3 Working with Life Tables |
|
|
296 | (4) |
|
7.4 Pricing Life Insurance |
|
|
300 | (5) |
|
7.5 Reserving Life Insurances |
|
|
305 | (4) |
|
|
309 | (4) |
|
7.7 Health Insurance and Markov Chains |
|
|
313 | (4) |
|
7.7.1 Markov Chain with R |
|
|
313 | (2) |
|
7.7.2 Valuation of Cash Flows |
|
|
315 | (1) |
|
7.7.3 APV of Benefits and Reserves |
|
|
316 | (1) |
|
|
317 | (2) |
|
7.8.1 Financial Mathematics |
|
|
317 | (1) |
|
|
317 | (1) |
|
7.8.3 Pricing Life Insurance |
|
|
317 | (1) |
|
7.8.4 Reserving Life Insurances |
|
|
318 | (1) |
|
7.8.5 More Advanced Topics |
|
|
318 | (1) |
|
8 Prospective Life Tables |
|
|
319 | (26) |
|
|
|
|
|
319 | (1) |
|
8.2 Smoothing Mortality Data |
|
|
320 | (4) |
|
8.2.1 Weighted Constrained Penalized Regression Splines |
|
|
322 | (1) |
|
8.2.2 Two-Dimensional P-Splines |
|
|
322 | (2) |
|
8.3 Lee-Carter and Related Forecasting Methods |
|
|
324 | (11) |
|
8.3.1 Lee-Carter (LC) Method |
|
|
326 | (2) |
|
8.3.2 Lee-Miller (LM) Method |
|
|
328 | (1) |
|
8.3.3 Booth-Maindonald-Smith (BMS) Method |
|
|
329 | (2) |
|
8.3.4 Hyndman-Ullah (HU) Method |
|
|
331 | (3) |
|
8.3.5 Robust Hyndman-Ullah (HUrob) Method |
|
|
334 | (1) |
|
8.3.6 Weighted Hyndman-Ullah (HUw) Method |
|
|
335 | (1) |
|
8.4 Other Mortality Forecasting Methods |
|
|
335 | (2) |
|
8.5 Coherent Mortality Forecasting |
|
|
337 | (3) |
|
8.6 Life Table Forecasting |
|
|
340 | (1) |
|
8.7 Life Insurance Products |
|
|
341 | (2) |
|
|
343 | (2) |
|
9 Prospective Mortality Tables and Portfolio Experience |
|
|
345 | (38) |
|
|
|
9.1 Introduction and Motivation |
|
|
346 | (1) |
|
9.2 Notation, Data, and Assumption |
|
|
347 | (2) |
|
|
349 | (9) |
|
9.3.1 Method 1: Approach Involving One Parameter with the SMR |
|
|
349 | (1) |
|
9.3.2 Method 2: Approach Involving Two Parameters with a Semiparametric Relational Model |
|
|
350 | (1) |
|
9.3.3 Method 3: Poisson GLM Including Interactions with Age and Calendar Year |
|
|
351 | (2) |
|
9.3.4 Method 4: Nonparametric Smoothing and Application of the Improvement Rates |
|
|
353 | (3) |
|
9.3.5 Completion of the Tables: The Approach of Denuit and Goderniaux |
|
|
356 | (2) |
|
|
358 | (17) |
|
9.4.1 First Level: Proximity between the Observations and the Model |
|
|
358 | (10) |
|
9.4.2 Second Level: Regularity of the Fit |
|
|
368 | (2) |
|
9.4.3 Third Level: Consistency and Plausibility of the Mortality Trends |
|
|
370 | (5) |
|
9.5 Operational Framework |
|
|
375 | (8) |
|
|
376 | (1) |
|
9.5.2 Computation of the Observed Statistics and Importation of the Reference |
|
|
377 | (1) |
|
9.5.3 Execution of the Methods |
|
|
378 | (1) |
|
9.5.4 Process of Validation |
|
|
378 | (3) |
|
9.5.5 Completion of the Tables |
|
|
381 | (2) |
|
|
383 | (24) |
|
|
|
|
383 | (2) |
|
10.2 Working with Incomplete Data |
|
|
385 | (6) |
|
10.2.1 Data Importation and Some Statistics |
|
|
386 | (1) |
|
10.2.2 Building the Appropriate Database |
|
|
387 | (1) |
|
10.2.3 Some Descriptive Statistics |
|
|
388 | (3) |
|
10.3 Survival Distribution Estimation |
|
|
391 | (3) |
|
10.3.1 Hoem Estimator of the Conditional Rates |
|
|
392 | (1) |
|
10.3.2 Kaplan-Meier Estimator of the Survival Function |
|
|
392 | (2) |
|
10.4 Regularization Techniques |
|
|
394 | (8) |
|
10.4.1 Parametric Adjustment |
|
|
396 | (2) |
|
10.4.2 Semiparametric Adjustment: Brass Relational Model |
|
|
398 | (1) |
|
10.4.3 Nonparametric Techniques: Whittaker-Henderson Smoother |
|
|
399 | (1) |
|
|
400 | (2) |
|
10.5 Modeling Heterogeneity |
|
|
402 | (3) |
|
10.5.1 Semiparametric Framework: Cox Model |
|
|
403 | (1) |
|
|
404 | (1) |
|
10.6 Validation of a Survival Model |
|
|
405 | (2) |
III Finance |
|
407 | (66) |
|
11 Stock Prices and Time Series |
|
|
409 | (20) |
|
|
|
|
409 | (1) |
|
11.2 Financial Time Series |
|
|
410 | (4) |
|
|
410 | (1) |
|
11.2.2 Data Used in This Chapter |
|
|
411 | (1) |
|
|
412 | (2) |
|
11.3 Heteroskedastic Models |
|
|
414 | (9) |
|
|
414 | (1) |
|
11.3.2 Standard GARCH(1,1) Model |
|
|
415 | (5) |
|
11.3.3 Forecasting Heteroskedastic Model |
|
|
420 | (1) |
|
11.3.4 More Efficient Implementation |
|
|
421 | (2) |
|
11.4 Application: Estimation of the VaR Based on the POT and GARCH Model |
|
|
423 | (4) |
|
|
427 | (2) |
|
12 Yield Curves and Interest Rates Models |
|
|
429 | (18) |
|
|
12.1 A Brief Overview of the Yield Curve and Scenario Simulation |
|
|
429 | (3) |
|
|
432 | (4) |
|
12.2.1 Description of the Datasets |
|
|
432 | (2) |
|
12.2.2 Principal Component Analysis |
|
|
434 | (2) |
|
|
436 | (8) |
|
12.3.1 Estimating the Nelson-Siegel Model with R |
|
|
440 | (4) |
|
|
444 | (3) |
|
12.4.1 Estimating the Svensson Model with R |
|
|
444 | (3) |
|
|
447 | (26) |
|
|
|
|
447 | (1) |
|
13.2 Optimization Problems in R |
|
|
448 | (4) |
|
|
448 | (1) |
|
13.2.2 Linear Programming |
|
|
449 | (1) |
|
13.2.3 Quadratic Programming |
|
|
450 | (1) |
|
13.2.4 Nonlinear Programming |
|
|
451 | (1) |
|
|
452 | (3) |
|
13.4 Portfolio Returns and Cumulative Performance |
|
|
455 | (1) |
|
13.5 Portfolio Optimization in R |
|
|
456 | (11) |
|
|
456 | (2) |
|
13.5.2 Mean-Variance Portfolio |
|
|
458 | (2) |
|
13.5.3 Robust Mean-Variance Portfolio |
|
|
460 | (1) |
|
13.5.4 Minimum Variance Portfolio |
|
|
460 | (1) |
|
13.5.5 Conditional Value-at-Risk Portfolio |
|
|
461 | (5) |
|
13.5.6 Minimum Drawdown Portfolio |
|
|
466 | (1) |
|
|
467 | (3) |
|
13.6.1 Efficient Frontier |
|
|
467 | (1) |
|
13.6.2 Weighted Return Plots |
|
|
468 | (2) |
|
|
470 | (3) |
IV Non-Life Insurance |
|
473 | (110) |
|
14 General Insurance Pricing |
|
|
475 | (36) |
|
|
|
14.1 Introduction and Motivation |
|
|
476 | (2) |
|
14.1.1 Collective Model in General Insurance |
|
|
476 | (1) |
|
14.1.2 Pure Premium in a Heterogenous Context |
|
|
476 | (1) |
|
|
477 | (1) |
|
14.1.4 Structure of the Chapter and References |
|
|
478 | (1) |
|
14.2 Claims Frequency and Log-Poisson Regression |
|
|
478 | (12) |
|
14.2.1 Annualized Claims Frequency |
|
|
478 | (2) |
|
14.2.2 Poisson Regression |
|
|
480 | (2) |
|
14.2.3 Ratemaking with One Categorical Variable |
|
|
482 | (2) |
|
14.2.4 Contingency Tables and Minimal Bias Techniques |
|
|
484 | (2) |
|
14.2.5 Ratemaking with Continuous Variables |
|
|
486 | (2) |
|
14.2.6 A Poisson Regression to Model Yearly Claim Frequency |
|
|
488 | (2) |
|
14.3 From Poisson to Quasi-Poisson |
|
|
490 | (2) |
|
14.3.1 NB1 Variance Form: Negative Binomial Type I |
|
|
490 | (1) |
|
14.3.2 NB2 Variance Form: Negative Binomial Type II |
|
|
491 | (1) |
|
14.3.3 Unstructured Variance Form |
|
|
492 | (1) |
|
14.3.4 Nonparametric Variance Form |
|
|
492 | (1) |
|
14.4 More Advanced Models for Counts |
|
|
492 | (7) |
|
14.4.1 Negative Binomial Regression |
|
|
493 | (2) |
|
14.4.2 Zero-Inflated Models |
|
|
495 | (2) |
|
|
497 | (2) |
|
14.5 Individual Claims, Gamma, Log-Normal, and Other Regressions |
|
|
499 | (2) |
|
|
499 | (1) |
|
14.5.2 The Log-Normal Model |
|
|
500 | (1) |
|
14.5.3 Gamma versus Log-Normal Models |
|
|
500 | (1) |
|
14.5.4 Inverse Gaussian Model |
|
|
501 | (1) |
|
14.6 Large Claims and Ratemaking |
|
|
501 | (6) |
|
14.6.1 Model with Two Kinds of Claims |
|
|
503 | (3) |
|
14.6.2 More General Model |
|
|
506 | (1) |
|
14.7 Modeling Compound Sum with Tweedie Regression |
|
|
507 | (3) |
|
|
510 | (1) |
|
15 Longitudinal Data and Experience Rating |
|
|
511 | (32) |
|
|
|
|
|
511 | (2) |
|
15.1.1 A Priori Rating for Cross-Sectional Data |
|
|
511 | (1) |
|
15.1.2 Experience Rating for Panel Data |
|
|
512 | (1) |
|
15.1.3 From Panel to Multilevel Data |
|
|
513 | (1) |
|
15.1.4 Structure of the Chapter |
|
|
513 | (1) |
|
15.2 Linear Models for Longitudinal Data |
|
|
513 | (19) |
|
|
513 | (4) |
|
15.2.2 Fixed Effects Models |
|
|
517 | (2) |
|
15.2.3 Models with Serial Correlation |
|
|
519 | (5) |
|
15.2.4 Models with Random Effects |
|
|
524 | (5) |
|
|
529 | (3) |
|
15.3 Generalized Linear Models for Longitudinal Data |
|
|
532 | (11) |
|
15.3.1 Specifying Generalized Linear Models with Random Effects |
|
|
532 | (3) |
|
15.3.2 Case Study: Experience Rating with Bonus-Malus Scales in R |
|
|
535 | (1) |
|
15.3.2.1 Bonus-Malus Scales |
|
|
535 | (1) |
|
15.3.2.2 Transition Rules, Transition Probabilities and Stationary Distribution |
|
|
536 | (1) |
|
|
539 | (4) |
|
16 Claims Reserving and IBNR |
|
|
543 | (40) |
|
|
|
543 | (2) |
|
|
543 | (1) |
|
|
544 | (1) |
|
16.2 Development Triangles |
|
|
545 | (3) |
|
16.3 Deterministic Reserving Methods |
|
|
548 | (4) |
|
16.3.1 Chain-Ladder Algorithm |
|
|
548 | (3) |
|
|
551 | (1) |
|
16.4 Stochastic Reserving Models |
|
|
552 | (25) |
|
16.4.1 Chain-Ladder in the Context of Linear Regression |
|
|
553 | (2) |
|
|
555 | (4) |
|
16.4.3 Poisson Regression Model for Incremental Claims |
|
|
559 | (5) |
|
16.4.4 Bootstrap Chain-Ladder |
|
|
564 | (4) |
|
16.4.5 Reserving Based on Log-Incremental Payments |
|
|
568 | (9) |
|
16.5 Quantifying Reserve Risk |
|
|
577 | (2) |
|
16.5.1 Ultimo Reserve Risk |
|
|
577 | (1) |
|
16.5.2 One-Year Reserve Risk |
|
|
577 | (2) |
|
|
579 | (1) |
|
|
580 | (3) |
Bibliography |
|
583 | (22) |
Index |
|
605 | (8) |
R Command Index |
|
613 | |