Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computational Collective Intelligence: 15th International Conference, ICCCI 2023, Budapest, Hungary, September 27-29, 2023, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 130,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 15th International Conference on Computational Collective Intelligence,  ICCCI 2023, held in Budapest, Hungary, during September 27–29, 2023.

The 63 full papers included in this book were carefully reviewed and selected from 218 submissions. They are organized in topical sections as follows: collective intelligence and collective decision-making; deep learning techniques;  natural language processing; data mining and machine learning; social networks and intelligent systems; cybersecurity, blockchain technology and Internet of Things; cooperative strategies for decision making and optimization; computational intelligence for digital content understanding;  knowledge engineering and application for Industry 4.0; computational intelligence in medical applications; and ensemble models and data fusion.
Collective Intelligence and Collective Decision-Making.- Hybrid Genetic
Algorithms to Determine 2-Optimality Consensus for a Collective of Ordered
Partitions.- From Fragmented Data to Collective Intelligence: A Data Fabric
Approach for University Knowledge Management.- An Architecture for Enabling
Collective Intelligence in IoT Networks.- Self-Organizing Maps for Data
Purchase Support in Data Marketplaces.- Agent based model of elementary
school group learning a case study.- Deep Learning Techniques.- Deep
Reinforcement Learning for Jointly Resource Allocation and Trajectory
Planning in UAV-assisted Networks.- DNGAE: Deep Neighborhood Graph
Autoencoder for robust blindhyperspectral unmixing.- Unlocking the Potential
of Deep Learning and Filter Gabor for Facial Emotion Recognition.- Graph
Convolution Collaborative Filtering with Dense Embeddings.- Automatic
Quantization for Convolutional Neural Networks Based on Enhanced
Bare-BonesParticle Swarm Optimization for Chest X-ray Image Classification.-
A Convolutional Autoencoder Approach for Weakly Supervised Anomaly Video
Detection.- Sparsity-invariant Convolution for Forecasting Irregularly
Sampled Time Series.- Efficient Sparse Networks from Watts-Strogatz Network
Priors.- Natural Language Processing.- Exploring the Role of Monolingual Data
in Cross-Attention Pre-Training for Neural Machine Translation.- Development
of a dictionary for preschool children with weak speech skills based on the
Word2Vec method.- An abstractive automatic summarization approach based on a
text comprehension model of cognitive psychology.- Detecting Duplicate
Multiple Choice Questions in The Large Question Bank.- A Context-Aware
Approach for Improving Dialog Act Detection in a Multilingual Conversational
Platform.- Data Minning and Machine learning.- Efficient Association Rules
Minimization Using a Double-Stage Quine-McCluskey-Based
Approach.- Complexity-Based Code Embeddings.- Differentially Private Copulas,
DAG and Hybrid Methods: a Comprehensive Data Utility Study.- Analysing
Android Apps Classification and Categories Validation by using Latent
Dirichlet Allocation.- Staircase Recognition based on Possibilistic Feature
Quality Assessment Method.- Social Networks and Intelligent Systems.- Toward
effective link prediction based on local information in organizational social
networks.- A new topic modeling method for tweets comparison.- Measuring
gender: A machine learning approach to social media demographics and author
profiling.- Crisis Detection by Social and Remote Sensing Fusion: A selective
Attention Approach.- Educational Videos Recommendation System Based On Topic
Modeling.- Cybersecurity, Blockchain Technology and Internet of Things.- A
Two-hop Neighborhood Based Berserk Detection Algorithm for Probabilistic
Model of Consensus in Distributed Ledger Systems.- Trust Assessment on Data
Stream Imputation in IoT Environments.- Optimizing Merkle Tree Structure for
Blockchain transactions by a DCProgramming approach.- Wearable Tag for Indoor
Localization in the context of Ambient Assisted Living.- Hyperledger
blockchain-enabled cold chain application for flower logistics.- A Fully
Decentralized Privacy-Enabled Federated Learning System.- Cooperative
Strategies for Decision Making and Optimization.- Two-dimensional Pheromone
in Ant Colony Optimization.- Analysis of different reinsertion strategies in
Steady State GeneticAlgorithm.- Traffic Optimization by Local Bacterial
Memetic Algorithm.- Optimizing Fire Control Monitoring System in Smart
Cities.- Computational Intelligence for Digital Content Understanding.-
Desertification Detection in Satellite Images using Siamese Variational
Autoencoder with Transfer Learning.- Speaker Identification Enhancement Using
Emotional Features.- Classification of punches in Olympic boxing using static
RGB cameras.- Learning Human Postures using Lab-Depth HOG Descriptors.-
SemiMemes: A Semi-supervised Learning Approach for Multimodal Memes
Analysis.- Extrinsic Calibration Framework for Camera-Lidar Fusion using
Recurrent Residual Network.- GAN-based Data Augmentation and Pseudo-Label
Refinement for Unsupervised Domain Adaptation Person
Re-Identification.- Intelligent Automated Pancreas Segmentation using U-Net
Model Variants.- Knowledge Engineering and Apllication for Industry 4.0.-
Energy and Congestion Awareness Traffic Scheduling in HybridSoftware-Defined
Network with Flow Splitting.- "Is Proton good enough?" - a performance
comparison between gaming on Windows and Linux.- Complete Coverage and Path
Planning for Emergency Response by UAVs in Disaster Areas.- Complete Coverage
and Path Planning for Emergency Response by UAVs in Disaster Areas.- Complex
layers of ranked prognostic models.- Project Team Members competences
configuration: a proactive andreactive approach.- Computational Intelligence
in Medical Applications.- Teeth disease recognition based on X-ray images.-
Predicting Alzheimers Disease Diagnosis Risk over Time with Survival Machine
Learning on the ADNI Cohort.- MEP: A Comprehensive Medicines Extraction
System on Prescriptions.- New Approaches to Monitoring Respiratory Activity
as Part of an Intelligent Model for Stress Assessment.- An Adaptive Network
Model for Anorexia Nervosa: Addressing the Effects of Therapy.- ReVQ-VAE: A
Vector Quantization-Variational Autoencoder for COVID-19 chest X-Ray
image.- Ensemble Models and Data Fusion.- Credit Risk Scoring Using a Data
Fusion Approach.- Goal-oriented Classification of Football Results.- Learning
from Imbalanced Data Streams Using Rotation-based Ensemble
Classifiers.- DE-Forest optimized decision tree ensemble.- Mining multiple
class imbalanced datasets using aspecialized balancing algorithm and the
Adaboost technique.- Investigation and prediction of Cognitive Load During
Memory and Arithmetic Tasks.