Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computational Collective Intelligence: 16th International Conference, ICCCI 2024, Leipzig, Germany, September 9-11, 2024, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 130,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This two-volume set LNAI 14810-14811 constitutes the refereed proceedings of the 16th International Conference on Computational Collective Intelligence, ICCCI 2024, held in Leipzig, Germany, during September 911, 2024.





The 59 revised full papers presented in these proceedings were carefully reviewed and selected from 234 submissions. 





Part I:  collective intelligence and collective decision-making; deep learning techniques; natural language processing; data mining and machine learning





Part II: social networks and intelligent system; cybersecurity, blockchain technology, and internet of things; cooperative strategies for decision making and optimization; computational intelligence for digital content understanding; knowledge engineering and application for industry 4.0 





 





 
.- Social Networks and Intelligent Systems.



.- A deep learning approach to fine-grained political ideology classification
on social media texts.



.- Enhancing Social Network Trust with Improved EigenTrust Algorithm.



.- An Empirical Analysis of the Usage of Requirements Attributes in
Requirements Engineering Research and Practice.



.- Experimental Study on Link Prediction in Unweighted and Weighted
Time-Evolving Organizational Social Network.



.- Assessing Student Quality of Life: Analysis of Key Influential Factors.



.- An Adaptive Network Model for Interpersonal Emotion Regulation in
Multimodal Human-Bot Interaction.



.- Cybersecurity, Blockchain Technology, and Internet of Things.



.- Strengthening Network Intrusion Detection in IoT Environments with
Self-Supervised Learning and Few Shot Learning.



.- Daily activities forecasting for long-term elderly behavior change
detection.



.- Detection of Fake Facial Images and Changes in Real Facial Images.



.- TabGAN-powered Data Augmentation and Explainable Boosting-based Ensemble
Learning for Intrusion Detection in Industrial Control Systems.



.- Malware detection among contact tracing apps with deep learning.



.- Cooperative Strategies for Decision Making and Optimization.



.- Modeling the Functioning of Decision Trees Based on Decision Rule Systems
by Greedy Algorithm.



.- Delays in computing with parallel metaheuristics on HPC infrastructure.



.- Reinforcement Learning-Based Cooperative Traffic Control System.



.- Discovering Spatial Prevalent Co-location Patterns by Once Scanning
Datasets without Generating Candidates.



.- New results for some Tur“an problem instances obtained using the 
reinforcement learning technique.



.- Computational Intelligence for Digital Content Understanding.



.- Impact of acquisition parameters on the performance of radiomic systems.



.- Feature Explainability and Enhancement for Skin Lesion Image Analysis.



.- Toward Intelligent Ethnicity Recognition and Face Anonymization: An
IncepX-Ensemble Model Approach.



.- Weak Supervised Asphalt Pavement Segmentation.



.- New Presence-Dependent Binary Similarity Measures for Pairwise Label
Comparisons in Multi-label Classification.



.- Synergistic Feature Fusion for Improved Classification: Combining
Dempster-Shafer Theory and Multiple CNN Architectures.



.- Knowledge Engineering and Application for Industry 4.0.



.- High learning hierarchical neural networks.



.- A new method of detecting Alzheimers disease.



.- GCC Aware Glaucoma Detection Using Macula OCT Image Analysis Based on Deep
Convolutional Neural Networks.



.- Understanding Geometric Relationship Concepts in Few-Shot Learning.



.- Applicability criterion of the Non Overlapping Template Matching algorithm
from NIST Statistical Test Suite SP800-22 for long aperiodic patterns.



.- Enhanced Activity Recognition through Joint utilization of Decimal
Descriptors and Temporal Binary Motions.



.- Using Multilevel Temporal Factorisation to Analyse Structure and Dynamics
for Higher-Order Adaptive and Evolutionary Processes.