Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computational Content Analyst: Using Machine Learning to Classify Media Messages

  • Formāts: 144 pages
  • Izdošanas datums: 02-Dec-2024
  • Izdevniecība: Routledge
  • Valoda: eng
  • ISBN-13: 9781040227206
  • Formāts - EPUB+DRM
  • Cena: 48,83 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 144 pages
  • Izdošanas datums: 02-Dec-2024
  • Izdevniecība: Routledge
  • Valoda: eng
  • ISBN-13: 9781040227206

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This guide gives researchers the tools they need to amplify their analytical reach through the integration of content analysis with computational classification approaches, including machine learning and the latest advancements in generative AI and Large Language Models (LLMs). It is particularly useful for academic researchers and students.



Most digital content, whether it be thousands of news articles or millions of social media posts, is too large for the naked eye alone. Often, the advent of immense datasets requires a more productive approach to labeling media beyond a team of researchers. This book offers practical guidance and Python code to traverse the vast expanses of data—significantly enhancing productivity without compromising scholarly integrity. We’ll survey a wide array of computer-based classification approaches, focusing on easy-to-understand methodological explanations and best practices to ensure that your data is being labeled accurately and precisely. By reading this book, you should leave with an understanding of how to select the best computational content analysis methodology to your needs for the data and problem you have.

This guide gives researchers the tools they need to amplify their analytical reach through the integration of content analysis with computational classification approaches, including machine learning and the latest advancements in generative artificial intelligence (AI) and large language models (LLMs). It is particularly useful for academic researchers looking to classify media data and advanced scholars in mass communications research, media studies, digital communication, political communication, and journalism.

Complementing the book are online resources: datasets for practice, Python code scripts, extended exercise solutions, and practice quizzes for students, as well as test banks and essay prompts for instructors. Please visit www.routledge.com/9781032846354.

Recenzijas

The Computational Content Analyst opens new research frontiers using highly sophisticated computer-based approaches that greatly expand the substantive depth and scope of quantitative content analysis. These approaches vastly improve scholars ability to examine the large body of content available on the internet.

- Maxwell McCombs, University of Texas at Austin, USA

The Computational Content Analyst provides a practical and informative guide for scholars and practitioners aiming to learn the basics of computational approaches to analyzing text. This book is practical and insightful; Vargo makes a complex topic accessible through insightful examples and useful research case studies.

- Matthew Weber, Rutgers University, USA

This book makes computational content analysis as easy as following a recipe.

- Milad Minooie, Kennesaw State University, USA

Preface
1. Unveiling Content Analysis in the Contemporary Media
Ecosystem
2. Designing a Computational Content Analysis: An Illustration from
"Civic Engagement, Social Capital, and Ideological Extremity"
3. Basic
Information Retrieval for Content Analysis
4. Supervised Machine Learning
with BERT for Content Analysis
5. Text Classification of News Media Content
Categories Using Deep Learning
6. Leveraging Generative AI for Content
Analysis
7. Unveiling the Veiled: Topic Modeling as a Lens for Discovery
8.
Extending Deep Learning to Image Content Analysis Appendix A: Codebook and
Conceptual Definitions Appendix B: Deletion Themes
Chris J. Vargo is an Associate Professor in the College of Media, Communication, and Information and Leeds School of Business (Courtesy) at the University of Colorado Boulder, USA. His research primarily focuses on the intersection of computational media analytics and political communication, employing computational methods to enhance understanding in these areas.