Atjaunināt sīkdatņu piekrišanu
  • Formāts - EPUB+DRM
  • Cena: 189,75 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents an essential survey of the state of the art in the application of diverse computational methods to the interpretation, prediction, and design of high-performance battery materials. Rechargeable batteries have become one of the most important technologies supporting the global transition from fossil fuels to renewable energy sources. Aided by the growth of high-performance computing and machine learning technologies, computational methods are being applied to design the battery materials of the future and pave the way to a more sustainable energy economy.





In this contributed collection, leading battery material researchers from across the globe share their methods, insights, and expert knowledge in the application of computational methods for battery material design and interpretation. With chapters featuring an array of computational techniques applied to model the relevant properties of cathodes, anodes, and electrolytes, this book provides the ideal starting point for any researcher looking to integrate computational tools in the development of next-generation battery materials and processes.
Battery materials: Bringing it all together for tomorrows energy
storage needs.- Atomistic Simulations of Battery Materials and Processes.- Ab
Initio Interfacial Electrochemistry Applied to Understanding, Tuning and
Designing Battery Chemistry.- Electrolyte-Electrode Interfaces: A Review of
Computer Simulations.- Many-particle Na-ion dynamics in NaMPO4 olivine
phosphates (M=Mn, Fe).- Crystal Structure Prediction for Battery Materials.-
Nanoscale Modelling of Substitutional Disorder in Battery Materials.- Machine
learning methods for the design of battery manufacturing processes.- Machine
learning methods for the design of battery manufacturing processes.-
Applications of Ab Initio Molecular Dynamics for Modeling Batteries.- Forming
a Chemically-Guided Basis for Cathode Materials with Reduced Biological
Impact using Combined Density Functional Theory and Thermodynamics
Modeling.- Oxygen Redox in Battery Cathodes: A Brief Overview.- Theoretical
Investigation of Layered Anode Materials.- Design of Improved Cathode
Materials by Intermixing Transition Metals in Sodium-Iron Sulphate and Sodium
Manganate for Sodium-Ion Batteries.- Sodium Intercalation into Graphite and
Graphene Complexes towards Advanced Sodium-Ion Battery Anode Materials.-
Combining molecular simulations with modern experiments to design ionic
liquid-based battery electrolytes.- Design of battery materials via defects
and doping.- Role of Adsorption Energy in the Design of Battery Materials: A
DFT Perspective.
Dorian Amir Henry Hanaor is a British, Israeli, Australian and German scientist, engineer and educator who has accumulated over 16 years of multi-faceted expertise in the field of materials engineering across  roles in the private sector, education, R&D and consulting. Dorians unique approach to education and research involves leveraging effective cross-disciplinary integration to create new insights and knowledge in diverse engineering topics, with his work having been cited over 7,000 times in the academic literature. In recent years Dorian has led experimental and computational studies into the design optimization of innovative battery materials for lithium and post-lithium-ion batteries and has served as a consultant for sustainable materials sourcing projects.