Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computational Flow Modeling for Chemical Reactor Engineering

(Bernal Chair Professor of Process Engineering at Bernal Institute, University of Limerick, Ireland)
  • Formāts: PDF+DRM
  • Sērija : Process Systems Engineering
  • Izdošanas datums: 12-Sep-2001
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780080502298
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 118,97 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Process Systems Engineering
  • Izdošanas datums: 12-Sep-2001
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780080502298
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

For chemical engineers and researchers in industry and academia, as well as for graduate students in reactor engineering courses, a text on using computational flow modeling to link reactor hardware to reactor performance. The author (a chemical engineer in India) writes that the text can be used as a basic resource for making decisions about investment in the application of computational fluid dynamics; as study material for an in-house course to facilitate the use of computational flow modeling; or as a companion reference in solving practical reactor engineering problems. Annotation c. Book News, Inc., Portland, OR (booknews.com)

This book describes how modeling fluid flow in chemical reactors may offer solutions that improve design, operation, and performance of reactors. Chemical reactors are any vessels, tubes, pipes, or tanks in which chemical reactions take place. Computational Flow Modeling for Chemical Reactor Engineering will show the reactor engineer how to define the specific roles of computational flow modeling, select appropriate tools, and apply these tools to link reactor hardware to reactor performance. Overall methodology is illustrated with numerous case studies.

Industry has invested substantial funds in computational flow modeling which will pay off only if it can be used to realize significant performance enhancement in chemical reactors. No other single source exists which provides the information contained in this book.
Preface xi
I INTRODUCTION
Reactor Engineering and Flow Modeling
Chemical Reactor Engineering (CRE)
7(12)
Computational Flow Modeling (CFM)
19(6)
CFM for CRE
25(10)
References
30(5)
II COMPUTATIONAL FLOW MODELING
Mathematical Modeling of Flow Processes
Basic Governing Equations
35(9)
Auxiliary Equations
44(1)
Boundary Conditions
45(7)
Discussion
52(2)
Summary
54(3)
References
54(3)
Turbulent Flow Processes
Introduction
57(1)
Turbulence: Physical Picture
58(4)
Modeling Approaches
62(6)
Turbulence Models Based on RANS
68(13)
Summary
81(4)
References
82(3)
Multiphase Flow Processes
Introduction
85(5)
Modeling Dispersed Multiphase Flows
90(22)
Other Types of Multiphase Flows
112(2)
Summary
114(9)
References
115(3)
Appendix 4.1 Time Scales for Dispersed Multiphase Flows
118(1)
Appendix 4.2 Correlations for Drag Coefficient
119(2)
Appendix 4.3 Interphase Heat and Mass Transfer Correlations
121(2)
Reactive Flow Processes
Introduction
123(1)
Turbulent Reactive Mixing
124(7)
Modeling Approaches
131(3)
RANS-based Models of Reactive Flow Processes
134(10)
Multiphase Reactive Flow Processes
144(3)
Summary
147(4)
References
147(4)
Numerical Solution of Model Equations
Introduction
151(2)
Finite Volume Method
153(12)
Finite Volume Method for Calculation of Flow Field
165(8)
Finite Volume Method for Unsteady Flows
173(2)
Application of Finite Volume Method
175(10)
Summary
185(6)
References
188(3)
Numerical Solution of Complex Flow Models
Simulation of Turbulent Flows
191(6)
Simulation of Multiphase Flows
197(19)
Simulation of Reactive Flows
216(3)
Special Topics
219(6)
Summary
225(4)
References
226(3)
Computational Tools for Simulating Flow Processes
Mapping a Computational Flow Model on a Computer
229(3)
Pre-processors
232(4)
Solvers
236(2)
Post-processors
238(2)
Summary
240(4)
References
240(4)
III CFM FOR CRE
Flow Modeling for Reactor Engineering
Reactor Engineering Methodology
244(3)
Example 1: Suspension Polymerization Reactor
247(7)
Example 2: OXY Reactor for EDC
254(10)
Example 3: Bubble Column Reactor
264(7)
Example 4: FCC Regenerator
271(10)
Summary
281(5)
References
281(5)
IV APPLICATIONS
Stirred Reactors
Engineering of Stirred Reactors
286(4)
CFD-based Modeling of Stirred Reactors
290(2)
Computational Snapshot Approach
292(26)
Application to Reactor Engineering
318(5)
Summary
323(5)
References
323(5)
Bubble Column Reactors
Engineering of Bubble Column Reactors
328(4)
CFD-based Modeling of Bubble Column Reactors
332(23)
Application to Reactor Engineering
355(5)
Summary
360(8)
References
361(2)
Appendix 11.1. Multigroup Model to Simulate Bubble Size Distribution
363(5)
Fluidized Bed Reactors
Engineering Fluidized Bed Reactors
368(8)
CFD Modeling of Gas-Solid Reactors
376(18)
Applications to Reactor Engineering
394(6)
Summary
400(3)
References
400(3)
Fixed Bed and Other Types of Reactors
Fixed Bed Reactors
403(12)
Trickle Bed Reactors/Packed Column Reactors
415(4)
Other Reactors
419(2)
Summary
421(12)
References
422(11)
V EPILOGUE
Epilogue
Notation 433(6)
Author Index 439(6)
Subject Index 445


Dr Vivek Ranade is a Bernal Chair Professor of Process Engineering at Bernal Institute, University of Limerick, Ireland. He leads Multiphase Reactors and Process Intensification group. Vivek and his group use experiments, computational flow modelling, population balance models and machine learning to generate new insights in multiphase flows, multiphase reactors, and process intensification. The group is developing novel fluidic devices, intensified processes and factory in a box platforms for decentralised manufacturing, personalised products, responsible resource usage, decarbonisation as well as mitigation and valorisation of waste.