Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computational Fluid Dynamics for Engineers and Scientists

  • Formāts: EPUB+DRM
  • Izdošanas datums: 09-Jan-2018
  • Izdevniecība: Springer
  • Valoda: eng
  • ISBN-13: 9789402412178
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 09-Jan-2018
  • Izdevniecība: Springer
  • Valoda: eng
  • ISBN-13: 9789402412178
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book offers a practical, application-oriented introduction to computational fluid dynamics (CFD), with a focus on the concepts and principles encountered when using CFD in industry.

Presuming no more knowledge than college-level understanding of the core subjects, the book puts together all the necessary topics to give the reader a comprehensive introduction to CFD. It includes discussion of the derivation of equations, grid generation and solution algorithms for compressible, incompressible and hypersonic flows. The final two chapters of the book are intended for the more advanced user. In the penultimate chapter, the special difficulties that arise while solving practical problems are addressed. Distinction is made between complications arising out of geometrical complexity and those arising out of the complexity of the physics (and chemistry) of the problem. The last chapter contains a brief discussion of what can be considered as the Holy Grail of CFD, namely, finding the optimal design of a fluid flow component. A number of problems are given at the end of each chapter to reinforce the concepts and ideas discussed in that chapter.





CFD has come of age and is widely used in industry as well as in academia as an analytical tool to investigate a wide range of fluid flow problems. This book is written for two groups: for those students who are encountering CFD for the first time in the form of a taught lecture course, and for those practising engineers and scientists who are already using CFD as an analysis tool in their professions but would like to deepen and broaden their understanding of the subject.

Recenzijas

A book that can be read from different approaches: the student's approach in the process of professional training for whom constitutes a valuable aid as a result of its didactic presentation illustrated with examples and exercises that facilitate learning and understanding of the topics covered. The engineer will find modern tools to analyze problems find solutions and make decisions during his professional practice. (Melio Sįenz, researchgate.net, July, 2018)

1 Introduction
1(16)
1.1 The Case of Flow in a Duct of Rectangular Cross-Section
2(5)
1.2 The Case of Flow in a Duct of Triangular Cross-Section
7(6)
1.3 CFD for the More Generic Case of Fluid Flow
13(4)
2 Equations Governing Fluid Motion
17(44)
2.1 Basic Concepts of Fluid Flow
17(6)
2.2 Laws Governing Fluid Motion
23(18)
2.2.1 Conservation of Mass
25(1)
2.2.2 Conservation of Linear Momentum
26(8)
2.2.3 Conservation of Angular Momentum
34(1)
2.2.4 Conservation of Energy
34(4)
2.2.5 Entropy Equation
38(1)
2.2.6 Equation of State
39(1)
2.2.7 Governing Equations for a Constant-Property Flow
40(1)
2.3 Boundary Conditions and Well-Posedness
41(14)
2.3.1 Mathematical Nature of the Governing Equations
42(3)
2.3.2 Well-Posedness of a Mathematical Problem
45(3)
2.3.3 Initial and Boundary Conditions for Fluid Flow Problems
48(7)
2.4 Summary
55(6)
3 Basic Concepts of CFD
61(70)
3.1 The Finite Difference Method
63(15)
3.1.1 Finite Difference Approximation of a Derivative
63(7)
3.1.2 Discretization of Differential Equations Using Finite Differences
70(3)
3.1.3 Discretization of Time-Dependent Equations
73(3)
3.1.4 Finite Difference Method on Non-uniform Meshes
76(2)
3.2 Analysis of Discretized Equations
78(21)
3.2.1 Need for Analysis: Simple Case Studies
78(7)
3.2.2 Consistency, Stability and Convergence
85(3)
3.2.3 Analysis for Consistency
88(2)
3.2.4 Analysis for Stability
90(2)
3.2.5 Von Neumann Stability Analysis
92(7)
3.3 Application to the Generic Scalar Transport Equation
99(4)
3.4 Dissipation and Dispersion Errors
103(13)
3.5 Control of Oscillations
116(10)
3.6 Summary
126(5)
4 Solution of Navier Stokes Equations
131(78)
4.1 Extension of Stability Analysis to Coupled Non-linear Equations
131(6)
4.1.1 Solution of Coupled Equations
131(4)
4.1.2 Solution of Non-linear Equations
135(2)
4.2 Solution of Coupled Equations for Compressible Flows
137(11)
4.2.1 Explicit MacCormack Method
138(5)
4.2.2 Implicit Beam-Warming Schemes
143(5)
4.3 Computation of Supersonic Flows
148(26)
4.3.1 Structure of a Shock
150(6)
4.3.2 Computation of Shocks with Central Schemes
156(2)
4.3.3 Godunov-Type Upwinding Schemes for Computation of Shocks
158(3)
4.3.4 Approximate Riemann Solvers for Computation of Shocks
161(3)
4.3.5 Approximate Riemann Solvers for the Shock Tube Problem
164(8)
4.3.6 Flux Vector Splitting Schemes
172(2)
4.4 Solution Methods for Incompressible Flows
174(25)
4.4.1 Artificial Compressibility Approach
175(1)
4.4.2 Streamfunction-Vorticity Approach
176(4)
4.4.3 Pressure Equation Approach
180(4)
4.4.4 Pressure Correction Approach
184(9)
4.4.5 Extension of SIMPLE to Flows of All Speeds
193(3)
4.4.6 Computation of Pressure on a Collocated Grid
196(3)
4.5 Coupled and Sequential or Segregated Solvers
199(4)
4.6 Summary
203(6)
5 Solution of Linearized Algebraic Equations
209(62)
5.1 Need for Speed
209(4)
5.2 Direct Methods
213(8)
5.2.1 Cramer's Rule
213(1)
5.2.2 Gaussian Elimination
214(2)
5.2.3 Gauss-Jordon Elimination
216(1)
5.2.4 LU Decomposition
216(2)
5.2.5 Direct Methods for Banded Matrices
218(3)
5.3 Basic Iterative Methods
221(6)
5.3.1 Jacobi Method
223(1)
5.3.2 Gauss-Seidel Method
224(1)
5.3.3 Successive Over-Relaxation (SOR) Method
225(1)
5.3.4 Block Iterative Methods
226(1)
5.4 Convergence Analysis of Classical Iterative Schemes
227(9)
5.5 Advanced Iterative Methods
236(33)
5.5.1 Chebyshev Iterative Methods
236(3)
5.5.2 ADI and Other Splitting Methods
239(6)
5.5.3 Strongly Implicit Procedures
245(7)
5.5.4 Conjugate Gradient Methods
252(5)
5.5.5 Multigrid Methods
257(12)
5.6 Summary
269(2)
6 Dealing with Irregular Flow Domains and Complex Physical Phenomena
271(76)
6.1 Dealing with Irregular Geometries
271(3)
6.2 The Body-Fitted Grid Approach
274(17)
6.2.1 Transformation of the Governing Equations
275(6)
6.2.2 Structured Grid Generation
281(8)
6.2.3 Solution of Navier-Stokes Equations Using the Structured Grid Approach
289(2)
6.3 The Unstructured Grid Approach
291(14)
6.3.1 Formulation of the Finite Volume Method
291(5)
6.3.2 Unstructured Grid Generation
296(7)
6.3.3 Solution of Navier-Stokes Equations on an Unstructured Grid
303(2)
6.4 Dealing with Complex Physics
305(27)
6.4.1 Why Modelling Is Necessary
305(2)
6.4.2 Turbulence Modelling
307(8)
6.4.3 Modelling of Reacting Flows
315(4)
6.4.4 Turbulent Combustion
319(5)
6.4.5 Multiphase Flows
324(4)
6.4.6 Other Phenomena Requiring Modelling
328(4)
6.5 Summary
332(15)
7 CFD and Flow Optimization
347(42)
7.1 Formulation of the Optimization Problem
348(4)
7.2 Iterative Search Methods for Optimization Problems
352(15)
7.2.1 Direct Iterative Search Methods
353(4)
7.2.2 Gradient-Based Search Methods
357(5)
7.2.3 Non-traditional Methods or Evolutionary Approaches
362(5)
7.3 Case Studies of Shape Optimization
367(10)
7.3.1 Formulation of the Optimization Problem: The Case of a U-Bend
368(3)
7.3.2 Formulation of the Optimization Problem: The Case of a T-Junction
371(1)
7.3.3 Search Method for the Optimal Solution
372(3)
7.3.4 Optimal Solutions
375(2)
7.4 Issues in Shape Optimization
377(7)
7.4.1 Issues Arising Out of Problem Formulation
378(4)
7.4.2 Issues Arising Out of the Search for Optimal Solution
382(2)
7.5 Summary
384(5)
References 389(10)
Index 399
Dr. Sreenivas Jayanti obtained his BTech degree in mechanical engineering from IT-BHU, Varanasi, India; MS in nuclear engineering from Ohio State University, Columbus, USA; DEA in fluid mechanics from INPG, Grenoble, France; and PhD in chemical engineering from Imperial College, London. After a three-year PDF at Imperial College, he returned to India and has been with IIT Madras since 1995. He is currently a professor in the department of chemical engineering. Dr. Jayantis research interests include computational fluid dynamics, multiphase flow, combustion and fuel cells. He has published 70 research articles in reputed journals in these areas.  He has also served as Associate Editor of International Journal of Heat and Mass Transfer.