Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computational Hydrodynamics of Capsules and Biological Cells

Edited by (University of Massachusetts Amherst, USA)
  • Formāts - EPUB+DRM
  • Cena: 77,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Spanning biological, mathematical, computational, and engineering sciences, computational biofluiddynamics addresses a diverse family of problems involving fluid flow inside and around living organisms, organs, tissue, biological cells, and other biological materials. Computational Hydrodynamics of Capsules and Biological Cells provides a comprehensive, rigorous, and current introduction to the fundamental concepts, mathematical formulation, alternative approaches, and predictions of this evolving field.

In the first several chapters on boundary-element, boundary-integral, and immersed-boundary methods, the book covers the flow-induced deformation of idealized two-dimensional red blood cells in Stokes flow, capsules with spherical unstressed shapes based on direct and variational formulations, and cellular flow in domains with complex geometry. It also presents simulations of microscopic hemodynamics and hemorheology as well as results on the deformation of capsules and cells in dilute and dense suspensions. The book then describes a discrete membrane model where a surface network of viscoelastic links emulates the spectrin network of the cytoskeleton, before presenting a novel two-dimensional model of red and white blood cell motion. The final chapter discusses the numerical simulation of platelet motion near a wall representing injured tissue.

This volume provides a roadmap to the current state of the art in computational cellular mechanics and biofluiddynamics. It also indicates areas for further work on mathematical formulation and numerical implementation and identifies physiological problems that need to be addressed in future research. MATLAB® code and other data are available at http://dehesa.freeshell.org/CC2

Recenzijas

"The two books edited by Constantine Pozrikidis [ see also Modeling and Simulation of Capsules and Biological Cells] deal primarily with mathematical evaluations and in silico investigations (modeling and simulations) of particles in motion. they complement each other in that information provided in one book is either absent, described in more detail, or expanded upon in the other. Both books contain a collection of chapters contributed by investigators from around the world who provide their expert experiences in fields such as biology and physiology, mathematics, mechanical and chemical engineering, as well as computer and information science. well written and structured, and the sequence of topics presented in the chapters is appropriate. Both books are fascinating a welcome addition to the growing number of publications in the fast-advancing field of biological dynamics." Christian T.K.-H. Stadtländer, Journal of Biological Dynamics, Vol. 7, 2013

"This book gives a quite extensive overview of different possible formulations for the motion of rigid or deforming particles and for the solution of flow-induced deformations. A wide range of numerical and methodological approaches are illustrated The presence of many numerical examples allows one to appreciate the capabilities of the approaches proposed and provides useful reference material. this book is a highly valuable reference for any graduate student or researcher interested in cellular mechanics, bio-fluid dynamics, bio-rheology or, in general, applications involving the transport of micro-capsules or cells by a fluid. It is accompanied by an Internet site where some additional material, including MATLAB code, may be found." Luca Formaggia, Mathematical Reviews, Issue 2012a

Preface xi
About the Editor xv
1 Flow-induced deformation of two-dimensional biconcave capsules
1(34)
C. Pozrikidis
1.1 Introduction
1(3)
1.2 Mathematical framework
4(5)
1.2.1 Membrane mechanics
5(2)
1.2.2 Boundary-integral formulation
7(2)
1.3 Numerical method
9(4)
1.3.1 Solution of the integral equation
10(2)
1.3.2 MATLAB® code rbc_2d
12(1)
1.4 Cell shapes and dimensionless numbers
13(2)
1.5 Capsule deformation in infinite shear flow
15(10)
1.6 Capsule motion near a wall
25(5)
1.7 Discussion
30(5)
2 Flow-induced deformation of artificial capsules
35(36)
D. Barthes-Biesel
J. Walter
A.-V. Salsac
2.1 Introduction
35(3)
2.2 Membrane mechanics
38(5)
2.2.1 Membrane deformation
38(2)
2.2.2 Membrane constitutive laws and equilibrium
40(2)
2.2.3 Osmotic effects and prestress
42(1)
2.3 Capsule dynamics in flow
43(3)
2.3.1 Instability due to compression
45(1)
2.3.2 Numerical procedure
46(1)
2.4 B-spline projection
46(6)
2.4.1 Computation of boundary integrals
50(1)
2.4.2 Two-grid method
51(1)
2.5 Coupling finite elements and boundary elements
52(5)
2.5.1 Isoparametric interpolation
52(1)
2.5.2 Mesh generation
53(1)
2.5.3 Membrane finite-element formulation
54(3)
2.5.4 Computation of boundary integrals
57(1)
2.6 Capsule deformation in linear shear flow
57(8)
2.6.1 Simple shear flow
57(6)
2.6.2 Plane hyperbolic flow
63(2)
2.7 Discussion
65(6)
3 A high-resolution fast boundary-integral method for multiple interacting blood cells
71(42)
J. B. Freund
H. Zhao
3.1 Introduction
72(5)
3.1.1 Fast summation methods
75(1)
3.1.2 Boundary conditions
76(1)
3.1.3 Membrane constitutive equations
76(1)
3.1.4 Preamble
77(1)
3.2 Mathematical framework
77(6)
3.2.1 Integral formulation
78(4)
3.2.2 Time advancement
82(1)
3.2.3 Flow specification
82(1)
3.3 Fast summation in boundary-integral computations
83(4)
3.3.1 Short-range component evaluation
84(1)
3.3.2 Smooth component evaluation
84(1)
3.3.3 Particle-particle/particle-mesh method (PPPM)
85(2)
3.4 Membrane mechanics
87(3)
3.4.1 Spectral basis functions
87(1)
3.4.2 Constitutive equations
88(1)
3.4.3 Equilibrium equations
89(1)
3.5 Numerical fidelity
90(6)
3.5.1 Truncation errors, convergence and resolution
90(2)
3.5.2 Aliasing errors, nonlinear instability and dealiasing
92(4)
3.6 Simulations
96(8)
3.6.1 Resolution and dealiasing
97(3)
3.6.2 Effective viscosity
100(1)
3.6.3 Leukocyte transport
101(1)
3.6.4 Complex geometries
102(2)
3.7 Summary and outlook
104(9)
3.7.1 Pros
104(1)
3.7.2 Cons
105(8)
4 Simulating microscopic hemodynamics and hemorheology with the immersed-boundary lattice-Boltzmann method
113(36)
J. Zhang
P. C. Johnson
A. S. Popel
4.1 Introduction
114(2)
4.2 The lattice-Boltzmann method
116(5)
4.2.1 General algorithm
116(3)
4.2.2 Boundary conditions
119(2)
4.3 The immersed-boundary method
121(2)
4.4 Fluid property updating
123(1)
4.5 Models of RBC mechanics and aggregation
124(2)
4.5.1 RBC geometry and fluid viscosity
124(2)
4.6 Single cells and groups of cells
126(8)
4.6.1 Deformation of a single cell in shear flow
127(2)
4.6.2 Channel flow
129(1)
4.6.3 Rouleaux formation
130(1)
4.6.4 Rouleaux dissociation in shear flow
130(4)
4.7 Cell suspension flow in microvessels
134(8)
4.7.1 Cell-free layers
136(1)
4.7.2 RBC distribution and velocity profile
137(2)
4.7.3 Effect of cell deformability and aggregation
139(2)
4.7.4 Effect of the channel width
141(1)
4.8 Summary and discussion
142(7)
5 Front-tracking methods for capsules, vesicles and blood cells
149(34)
P. Bagchi
5.1 Introduction
149(4)
5.2 Numerical method
153(4)
5.2.1 Navier-Stokes solver
154(2)
5.2.2 Computation of the interfacial force
156(1)
5.2.3 Membrane discretization
157(1)
5.3 Capsule deformation in simple shear flow
157(7)
5.3.1 Spherical capsules
158(1)
5.3.2 Ellipsoidal capsules
159(3)
5.3.3 Vesicles
162(2)
5.3.4 Red blood cells
164(1)
5.4 Capsule interception
164(3)
5.5 Capsule motion near a wall
167(1)
5.6 Suspension flow in a channel
168(2)
5.7 Rolling on an adhesive substrate
170(3)
5.8 Summary
173(10)
6 Dissipative particle dynamics modeling of red blood cells
183(36)
D. A. Fedosov
B. Caswell
G. E. Karniadakis
6.1 Introduction
184(1)
6.2 Mathematical framework
185(5)
6.2.1 Dissipative particle dynamics
185(2)
6.2.2 Mesoscopic viscoelastic membrane model
187(2)
6.2.3 Triangulation
189(1)
6.3 Membrane mechanical properties
190(6)
6.3.1 Shear modulus
191(1)
6.3.2 Compression modulus
192(1)
6.3.3 Bending rigidity
193(1)
6.3.4 Membrane viscosity
194(2)
6.4 Membrane-solvent interfacial conditions
196(1)
6.5 Numerical and physical scaling
197(1)
6.6 Membrane mechanics
198(4)
6.6.1 Equilibrium shape and the stress-free model
199(3)
6.7 Membrane rheology from twisting torque cytometry
202(2)
6.8 Cell deformation in shear flow
204(5)
6.9 Tube flow
209(3)
6.10 Summary
212(7)
7 Simulation of red blood cell motion in microvessels and bifurcations
219(26)
T. W. Secomb
7.1 Introduction
219(3)
7.2 Axisymmetric models for single-file RBC motion
222(3)
7.3 Two-dimensional models for RBC motion
225(4)
7.3.1 Element cell model
226(2)
7.3.2 Governing equations and numerical method
228(1)
7.4 Tank-treading in simple shear flow
229(2)
7.5 Channel flow
231(1)
7.6 Motion through diverging bifurcations
232(3)
7.7 Motion of multiple cells
235(4)
7.8 Discussion
239(6)
8 Multiscale modeling of transport and receptor-mediated adhesion of platelets in the bloodstream
245(64)
N. A. Mody
M. R. King
8.1 Introduction
246(7)
8.1.1 Role of shear flow in platelet transport and function
247(2)
8.1.2 Models of transport, deposition, and aggregation
249(1)
8.1.3 Motion of oblate spheroids in semi-infinite shear flow
250(2)
8.1.4 Preamble
252(1)
8.2 Mathematical framework
253(5)
8.2.1 The CDL-BIEM method
254(2)
8.2.2 Repulsive contact force
256(1)
8.2.3 Numerical implementation
257(1)
8.2.4 Validation of half-space CDL-BIEM for oblate spheroid motion
258(1)
8.3 Motion of an oblate spheroid near a wall in shear flow
258(8)
8.3.1 Regime I: Modified Jeffery orbits
259(1)
8.3.2 Regime II: Pole vaulting and periodic tumbling
259(2)
8.3.3 Regime III: Wobble flow
261(3)
8.3.4 Chaotic motion
264(1)
8.3.5 Oblate spheroids with aspect ratio 0.3-0.5
265(1)
8.4 Brownian motion
266(8)
8.4.1 Brownian motion near a wall in a quiescent fluid
267(2)
8.4.2 Convective and diffusive transport
269(3)
8.4.3 Influence on surface adhesive dynamics
272(2)
8.5 Shape and wall effects on hydrodynamic collision
274(9)
8.5.1 Collision mechanisms
275(1)
8.5.2 Collision frequency
275(8)
8.6 Transient aggregation of two platelets near a wall
283(11)
8.6.1 Adhesive dynamics model
285(4)
8.6.2 Binding efficiency for GPIbα-vWF kinetics
289(1)
8.6.3 Effect of interplatelet binding on collision
290(2)
8.6.4 Force mechanics of bond rupture
292(2)
8.7 Conclusions and future directions
294(15)
Index 309
C. Pozrikidis is a professor in the Department of Chemical Engineering at the University of Massachusetts, Amherst.