Atjaunināt sīkdatņu piekrišanu

Computational Intelligence Based Hyperspectral Image Analysis and Applications: Volume 2 [Hardback]

Edited by , Edited by
  • Formāts: Hardback, 318 pages, height x width: 235x155 mm, 122 Illustrations, color; 15 Illustrations, black and white; X, 318 p. 137 illus., 122 illus. in color., 1 Hardback
  • Sērija : Intelligent Systems Reference Library 269
  • Izdošanas datums: 11-Sep-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031831268
  • ISBN-13: 9783031831263
  • Hardback
  • Cena: 225,41 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 265,19 €
  • Ietaupiet 15%
  • Grāmata tiks piegādāta 3-6 nedēļas pēc tās publicēšanas.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 318 pages, height x width: 235x155 mm, 122 Illustrations, color; 15 Illustrations, black and white; X, 318 p. 137 illus., 122 illus. in color., 1 Hardback
  • Sērija : Intelligent Systems Reference Library 269
  • Izdošanas datums: 11-Sep-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031831268
  • ISBN-13: 9783031831263

Computational Intelligence based Hyperspectral Image Analysis and Applications, the second volume in this series, delves into the practical implementation of cutting-edge computational intelligence techniques in hyperspectral imaging, offering a comprehensive exploration of advanced analysis methods and their real-world applications. This volume consists 11 chapters that cover key topics such as classification, segmentation, pan sharpening and a variety of impactful applications. Readers will discover how these techniques are applied in fields like material identification, medical imaging, agriculture, wildfire detection, and remote sensing. This volume brings together an expert group of contributors, whose collective knowledge and practical experience offer readers a unique perspective on how to harness the power of computational intelligence for solving complex challenges in hyperspectral image analysis.

Hyperspectral Imaging for the Diagnosis of Latent Tuberculosis Infection.- Hyperspectral Image Analysis for Plant Water Stress Assessment Using One-Dimensional Convolutional Neural Network.- Hyperspectral image synthesis from RGB images applied to wildfire detection.