Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computational Intelligence in Communications and Business Analytics: 6th International Conference, CICBA 2024, Patna, India, January 23-25, 2024, Revised Selected Papers, Part II

  • Formāts - PDF+DRM
  • Cena: 71,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This three-volume set CCIS 2366-2368 constitutes the refereed proceedings of the 6th International Conference on Computational Intelligence in Communications and Business Analytics, CICBA 2024, held in Patna, India, during January 2325, 2024.





The 82 full papers presented in this volume were carefully reviewed and selected from 249 submissions. Together, these papers showcase cutting-edge research in the fields of computational intelligence and business analytics, covering a broad range of topics.
Computational Intelligence II.- Multimodal Skin Cancer Classification
Optimized Convolutional Network with Customized Loss and RNN Based FCNN
Fusion.- Deep Learning Based MLP Model in Detection of Cotton Plant Leaf
Disease.- Enhancing Drug Candidate Generation Comparing Genetic Algorithm And
WGAN GP Approaches.- Predicting Employee Job Satisfaction by Using Vector
Space Model.- Simplernn Based Human Emotion Recognition Using EEFG Signals.-
 Improving Melanoma Classification Using Transfer Learning Based Wavelet
Features.- Research Challenges and Future Perspective in Semantic
Segmentation of Brain Stroke Lesions in Magnetic Resonance Imaging.-
Revolutionizing Suicide Ideation Detection in Social Media An Ensemble
Optimized Bi GRU With Attention Approach.- A Computer Vision Model Utilizing
Autoencoders for Surface Defect Recognition.- A Study on the Impact of
Partitioning on Community Detection in Graph Networks.- Load Combination
Optimization for Trailer Design using Genetic Algorithm.- Features Extraction
from Android Apps Using Reverse Engineering.-  Efficient Near Infrared
Spectroscopy Based Feature Selection of Tannic Acid for Black Tea
Evaluation.- Taming the Monkeypox Outbreak with Deep Learning for Skin Lesion
Detection.- A Comprehensive Review of AI based Low Back Pain Assessment and
Rehabilitation.- Analysis of Multidomain Abstractive Summarization Using
Salience Allocation.- Detection and Localization of Malignant Cells from
Surgical Images for Robot Assisted Invasive Surgery using Deep Learning.- An
Intelligent Integrated Prediction Based Approach for Heart Disease Detection
A Comprehensive Study.- Multi Modal Approach for Ethereum Smart Contract
Vulnerability Detection.- Kcst Net Deep Learning Based Classification of
Kidney Diseases Using CT Images.- High Yield Model Compression Paradigms for
Low Footprint Signal Classification Supplementing Resource Constrained
Embedded Environments.-  Regularizing CNNs using Confusion Penalty Based
Label Smoothing for Histopathology Images.- Leveraging Generative Pre Trained
Models and Discriminative Pre Trained Language Models for Sentiment
Analysis.- Advancing Lung Cancer Diagnosis and Prognosis through Machine
Learning Algorithm.- Influent sewage water classification using machine
learning.- Fine grained Image Classification on Skin Cancer Dataset.-
Learning based soiling loss estimation in solar panels and solar panel
soiling database generation.- CNN ML Framework Based Predominant Musical
Instrument Recognition Using Mel Spectrogram.