Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computational Intelligence Methods for Bioinformatics and Biostatistics: 10th International Meeting, CIBB 2013, Nice, France, June 20-22, 2013, Revised Selected Papers

Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Bioinformatics 8452
  • Izdošanas datums: 15-Jul-2014
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319090429
  • Formāts - PDF+DRM
  • Cena: 47,58 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Bioinformatics 8452
  • Izdošanas datums: 15-Jul-2014
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319090429

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the thoroughly refereed post-conference
proceedings of the 10th International Meeting on Computational
Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2013, held in Nice, France in June 2013.
The 19 revised full papers presented were carefully reviewed and
selected from 35 submissions. The papers are organized in topical
sections on bioinformatics, biostatistics, knowledge based medicine, and data integration and analysis in omic-science.

Dynamic Gaussian Graphical Models for Modelling Genomic
Networks.- Molecular Docking for Drug Discovery: Machine-Learning Approaches
for Native Pose Prediction of Protein-Ligand Complexes.- BioCloud Search
EnGene: Surfing Biological Data on the Cloud.- Genomic Sequence
Classification Using Probabilistic Topic Modeling.- Community Detection in
Protein-Protein Interaction Networks Using Spectral and Graph
Approaches.- Weighting Scheme Methods for Enhanced Genomic Annotation
Prediction.- French Flag Tracking by Morphogenetic Simulation Under
Developmental Constraints.- HighDimensional Sparse Matched CaseControl and
CaseCrossover Data: A Review of Recent Works, Description of an R Tool and
an Illustration of the Use in Epidemiological Studies.- Piecewise Exponential
Artificial Neural Networks (PEANN) for Modeling Hazard Function with Right
Censored Data.- Writing Generation Model for Health Care Neuromuscular System
Investigation.- Clusters Identification in Binary Genomic Data: The
Alternative Offered by Scan Statistics Approach.- Reverse Engineering
Methodology for Bioinformatics Based on Genetic Programming, Differential
Expression Analysis and Other Statistical Methods.- Integration of
Clinico-Pathological and microRNA Data for Intelligent Breast Cancer Relapse
Prediction Systems.- Superresolution MUSIC Based on Marcenko-Pastur Limit
Distribution Reduces Uncertainty and Improves DNA Gene Expression-Based
Microarray Classification.- Prediction of Single-Nucleotide Polymorphisms
Causative of Rare Diseases.- A Framework for Mining Life Sciences Data on the
Semantic Web in an Interactive, Graph-Based Environment.- Combining
Not-Proper ROC Curves and Hierarchical Clustering to Detect Differentially
Expressed Genes in Microarray Experiments.- Fast and Parallel Algorithm for
Population-Based Segmentation of Copy-Number Profiles.- Identification of
Pathway Signatures in Parkinsons Disease with Gene Ontology and Sparse
Regularization.