Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computational Intelligence Methods for Bioinformatics and Biostatistics: 8th International Meeting, CIBB 2011, Gargnano del Garda, Italy, June 30 - July 2, 2011, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Bioinformatics 7548
  • Izdošanas datums: 11-Dec-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642356865
  • Formāts - PDF+DRM
  • Cena: 49,96 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Bioinformatics 7548
  • Izdošanas datums: 11-Dec-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642356865

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the thoroughly refereed post-proceedings of the 8th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2011, held in Gargnano del Garda, Italy, in June/July 2011. The 19 papers, presented together with 2 keynote speeches, were carefully reviewed and selected from 24 submissions. The papers are organized in topical sections on statistical learning, genomics, computational intelligence for health at the edge, proteomics, intelligent clinical decision support systems (i-CDSS), bioinformatics, and data clustering.
Modelling the Effect of Genes on the Dynamics of Probabilistic Spiking
Neural Networks for Computational Neurogenetic.- Biostatistics Meets
Bioinformatics in Integrating Information from Highdimensional Heterogeneous
Genomic Data: Two Examples from Rare Genetic Diseases and Infectious
Diseases.- Bayesian Models for the Multi-sample Time-Course Microarray
Experiments.- A Machine Learning Pipeline for Discriminant Pathways
Identification.- Discovering Hidden Pathways in Bioinformatics.- Reliability
of miRNA Microarray Platforms: An Approach Based on Random Effects Linear
Models.- A Bioinformatics Procedure to Identify and Annotate Somatic
Mutations in Whole-Exome Sequencing Data.- Feature Selection for the
Prediction and Visualization of Brain Tumor Types Using Proton Magnetic
Resonance Spectroscopy Data.- On the Use of Graphical Models to Study ICU
Outcome Prediction in Septic Patients Treated with Statins.- Integration of
Biomolecular Interaction Data in a Genomic and Proteomic Data Warehouse to
Support Biomedical Knowledge Discovery.- Machine-Learning Methods to Predict
Protein Interaction Sites in Folded Proteins.- Complementing Kernel-Based
Visualization of Protein Sequences with Their Phylogenetic Tree.- DEEN: A
Simple and Fast Algorithm for Network Community Detection.- Self-similarity
in Physiological Time Series: New Perspectives from the Temporal Spectrum of
Scale Exponents.- Support Vector Machines for Survival Regression.- Boosted
C5 Trees i-Biomarkers Panel for Invasive Bladder Cancer Progression
Prediction.- A Faster Algorithm for Motif Finding in Sequences from ChIP-Seq
Data.- Case/Control Prediction from Illumina Methylation Microarrays and
Two-Color Channels in the Presence of Batch Effects.- Supporting the Design,
Communication and Management of Bioinformatic Protocols through the Leaf
Tool.- Genomic Annotation Prediction Based on Integrated Information.-
Solving Biclustering with a GRASP-Like Metaheuristic: Two Case-Studies on
Gene ExpressionAnalysis.