Atjaunināt sīkdatņu piekrišanu

Computational Intelligence and Predictive Analysis for Medical Science: A Pragmatic Approach [Hardback]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: Hardback, 333 pages, height x width: 240x170 mm, weight: 681 g, 37 Tables, black and white; 84 Illustrations, black and white; 67 Illustrations, color
  • Sērija : Intelligent Biomedical Data Analysis
  • Izdošanas datums: 08-Nov-2021
  • Izdevniecība: De Gruyter
  • ISBN-10: 3110714981
  • ISBN-13: 9783110714982
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 181,15 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 333 pages, height x width: 240x170 mm, weight: 681 g, 37 Tables, black and white; 84 Illustrations, black and white; 67 Illustrations, color
  • Sērija : Intelligent Biomedical Data Analysis
  • Izdošanas datums: 08-Nov-2021
  • Izdevniecība: De Gruyter
  • ISBN-10: 3110714981
  • ISBN-13: 9783110714982
Citas grāmatas par šo tēmu:

This book uncovers stakes and possibilities offered by Computational Intelligence and Predictive Analytics to Medical Science. The main focus is on data technologies,classification, analysis and mining, information retrieval, and in the algorithms needed to elaborate the informations. A section with use cases and applications follows the two main parts of the book, respectively dedicated to the foundations and techniques of the discipline.

THE SERIES: INTELLIGENT BIOMEDICAL DATA ANALYSIS
By focusing on the methods and tools for intelligent data analysis, this series aims to narrow the increasing gap between data gathering and data comprehension. Emphasis is also given to the problems resulting from automated data collection in modern hospitals, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring. In medicine, overcoming this gap is crucial since medical decision making needs to be supported by arguments based on existing medical knowledge as well as information, regularities and trends extracted from big data sets.
P.Tanwar, Manav Inst., Faridabad; P.Kumar, S.Rawat, Amity Univ., Tashkent; M.Mohammadian, Univ. of Canberra; S. Ahmad, Univ. of Ottawa.