Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computational Learning Theories: Models for Artificial Intelligence Promoting Learning Processes

  • Formāts - PDF+DRM
  • Cena: 154,65 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book shows how artificial intelligence grounded in learning theories can promote individual learning, team productivity and multidisciplinary knowledge-building. It advances the learning sciences by integrating learning theory with computational biology and complexity, offering an updated mechanism of learning, which integrates previous theories, provides a basis for scaling from individuals to societies, and unifies models of psychology, sociology and cultural studies.

The book provides a road map for the development of AI that addresses the central problems of learning theory in the age of artificial intelligence including:

  • optimizing human-machine collaboration
  • promoting individual learning
  • balancing personalization with privacy
  • dealing with biases and promoting fairness
  • explaining decisions and recommendations to build trust and accountability
  • continuously balancing and adapting to individual, team and organizational goals
  • generating and generalizing knowledge across fields and domains


The book will be of interest to educational professionals, researchers, and developers of educational technology that utilize artificial intelligence.

1. Why Computational Learning Theories?.-
2. AI and Learning
Processes.-
3. A Complex Hierarchical Framework of Learning.-
4. Piaget and
the Ontogeny of Intelligence.-
5. Keller and the ARCS Model of Motivation.-
6. Complexity Theory and Learning.-
7. AI Roles for Enhancing Individual
Learning.-
8. Informal Social Learning.-
9. How People Learn.-
10. AI
Assisting Individuals as Team Members.-
11. AI Roles for the Team or
Organization.-
12. A Network Theory of Culture.-
13. AI Roles in Cultural
Learning.-
14. Open Questions.
Professor David Gibson, is the UNESCO Chair on Data Science in Higher Education Learning and Teaching at Curtin University in Perth Australia. He received his doctorate in Leadership and Policy Studies from the University of Vermont in 1999 based on a study of complex systems modeling of educational change. His study demonstrated the feasibility of bridging from qualitative information to quantifiable dynamic relationships in complex models that verify trajectories of organizational change. He provides thought leadership as a researcher, professor, learning scientist and innovator.





He is creator of simSchool, a classroom flight simulator for preparing educators and provides vision and sponsorship for Curtin Universitys Challenge, a mobile, game-based learning platform. His research has extended from learning analytics, complex systems analysis and modeling of education to application of complexity via games and simulations in teacher education, web applications and the future of learning. Dr. Gibson has also advanced the use of technology to personalize education via cognitive modeling, design and implementation.





 





Dirk Ifenthaler is Professor and Chair of Learning, Design and Technology at University of Mannheim, Germany and UNESCO Deputy Chair on Data Science in Higher Education Learning and Teaching at Curtin University, Australia. Dirks research focuses on the intersection of cognitive psychology, educational technology, data analytics, and organisational learning. He is the Editor-in-Chief of the Technology, Knowledge and Learning and Editor-in-Chief of Educational Technology & Society.