Atjaunināt sīkdatņu piekrišanu

Computational Methods for General Sparse Matrices 1991 ed. [Hardback]

  • Formāts: Hardback, 328 pages, height x width: 297x210 mm, weight: 1480 g, XIX, 328 p., 1 Hardback
  • Sērija : Mathematics and Its Applications 65
  • Izdošanas datums: 30-Sep-1991
  • Izdevniecība: Springer
  • ISBN-10: 079231154X
  • ISBN-13: 9780792311546
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 328 pages, height x width: 297x210 mm, weight: 1480 g, XIX, 328 p., 1 Hardback
  • Sērija : Mathematics and Its Applications 65
  • Izdošanas datums: 30-Sep-1991
  • Izdevniecība: Springer
  • ISBN-10: 079231154X
  • ISBN-13: 9780792311546
Citas grāmatas par šo tēmu:
'Et moi, ...• si j'avait su comment en revenir, One service mathematics has rendered the je n 'y serais point aile.' human race. It has put common sense back where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell 0. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non­ linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com­ puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'elre of this series.
1. Exploiting Sparsity.-
2. Storage Schemes.-
3. General Scheme for Linear Algebraic Problems.-
4. Pivotal Strategies for Gaussian Elimination.-
5. Use of Iterative Refinement in the GE Process.-
6. Implementation of the Algorithms.-
7. Solving Least Squares Problems by Augmentation.-
8. Sparse Matrix Technique for Ordinary Differential Equations.-
9. Condition Number Estimators in a Sparse Matrix Software.-
10. Parallel Direct Solvers.- 11 Parallel Orthomin for General Sparse Matrices.-
12. Orthogonalization Methods.-
13. Two Storage Schemes for Givens Plane Rotations.-
14. Pivotal Strategies for Givens Plane Rotations.-
15. Iterative Refinement after the Plane Rotations.-
16. Preconditioned Conjugate Gradients for Givens Plane Rotations.- References.- Author Index.