|
|
1 | (4) |
Part I Computational Methods |
|
|
2 Fundamental Mathematics |
|
|
5 | (6) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
9 | (1) |
|
|
10 | (1) |
|
3 Solving Linear Systems of Equations |
|
|
11 | (10) |
|
|
12 | (2) |
|
|
12 | (1) |
|
|
13 | (1) |
|
3.1.3 Algorithmic Complexity |
|
|
13 | (1) |
|
3.1.4 Fill-in and Matrix Ordering |
|
|
13 | (1) |
|
3.1.5 Incomplete LU decomposition |
|
|
14 | (1) |
|
|
14 | (5) |
|
3.2.1 Krylov Subspace Methods |
|
|
15 | (1) |
|
3.2.2 Optimality and Short Recurrences |
|
|
16 | (1) |
|
3.2.3 Algorithmic Complexity |
|
|
16 | (1) |
|
|
16 | (2) |
|
3.2.5 Starting and Stopping |
|
|
18 | (1) |
|
|
19 | (2) |
|
4 Solving Nonlinear Systems of Equations |
|
|
21 | (8) |
|
4.1 Newton-Raphson Methods |
|
|
22 | (3) |
|
|
23 | (1) |
|
4.1.2 Approximate Jacobian Newton |
|
|
24 | (1) |
|
4.1.3 Jacobian-Free Newton |
|
|
24 | (1) |
|
4.2 Newton-Raphson with Global Convergence |
|
|
25 | (3) |
|
|
25 | (2) |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
29 | (18) |
|
5.1 Convergence of Inexact Iterative Methods |
|
|
29 | (4) |
|
5.2 Convergence of Inexact Newton Methods |
|
|
33 | (5) |
|
|
37 | (1) |
|
5.3 Numerical Experiments |
|
|
38 | (4) |
|
|
42 | (2) |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
44 | (3) |
Part II Power System Analysis |
|
|
|
47 | (12) |
|
|
49 | (3) |
|
6.1.1 Voltage and Current |
|
|
49 | (1) |
|
|
50 | (1) |
|
6.1.3 Impedance and Admittance |
|
|
51 | (1) |
|
6.1.4 Kirchhoff s Circuit Laws |
|
|
52 | (1) |
|
|
52 | (4) |
|
6.2.1 Generators, Loads, and Transmission Lines |
|
|
53 | (1) |
|
6.2.2 Shunts and Transformers |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
57 | (2) |
|
7 Traditional Power Flow Solvers |
|
|
59 | (14) |
|
|
59 | (4) |
|
7.1.1 Power Mismatch Function |
|
|
60 | (1) |
|
|
61 | (1) |
|
7.1.3 Handling Different Bus Types |
|
|
62 | (1) |
|
7.2 Fast Decoupled Load Flow |
|
|
63 | (8) |
|
7.2.1 Classical Derivation |
|
|
64 | (2) |
|
7.2.2 Shunts and Transformers |
|
|
66 | (1) |
|
|
67 | (4) |
|
7.3 Convergence and Computational Properties |
|
|
71 | (1) |
|
7.4 Interpretation as Elementary Newton-Krylov Methods |
|
|
71 | (1) |
|
|
72 | (1) |
|
8 Newton-Krylov Power Flow Solver |
|
|
73 | (10) |
|
|
73 | (1) |
|
|
74 | (3) |
|
|
75 | (1) |
|
|
75 | (1) |
|
8.2.3 Reactive Power Limits and Tap Changing |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (1) |
|
|
80 | (3) |
|
|
83 | (4) |
|
9.1 Simulating Branch Outages |
|
|
83 | (3) |
|
9.2 Other Simulations with Uncertainty |
|
|
86 | (1) |
|
|
86 | (1) |
|
|
87 | (16) |
|
|
87 | (5) |
|
|
88 | (3) |
|
|
91 | (1) |
|
|
92 | (3) |
|
|
95 | (5) |
|
|
98 | (2) |
|
10.4 Contingency Analysis |
|
|
100 | (2) |
|
|
102 | (1) |
|
|
103 | (4) |
|
|
103 | (2) |
|
|
105 | (2) |
Index |
|
107 | |