Atjaunināt sīkdatņu piekrišanu

Computational Methods in Power System Analysis 2014 ed. [Hardback]

  • Formāts: Hardback, 110 pages, height x width: 235x155 mm, weight: 354 g, 9 Illustrations, color; 14 Illustrations, black and white; IX, 110 p. 23 illus., 9 illus. in color., 1 Hardback
  • Sērija : Atlantis Studies in Scientific Computing in Electromagnetics 1
  • Izdošanas datums: 17-Mar-2014
  • Izdevniecība: Atlantis Press (Zeger Karssen)
  • ISBN-10: 9462390630
  • ISBN-13: 9789462390638
  • Hardback
  • Cena: 110,72 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 130,26 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 110 pages, height x width: 235x155 mm, weight: 354 g, 9 Illustrations, color; 14 Illustrations, black and white; IX, 110 p. 23 illus., 9 illus. in color., 1 Hardback
  • Sērija : Atlantis Studies in Scientific Computing in Electromagnetics 1
  • Izdošanas datums: 17-Mar-2014
  • Izdevniecība: Atlantis Press (Zeger Karssen)
  • ISBN-10: 9462390630
  • ISBN-13: 9789462390638

With sections handling the latest computational methods, mathematical concepts, power flow, and contingency analysis, this volume’s integrated treatment of the subject prepares technicians and engineers for the large and complex power systems of the future.



This book treats state-of-the-art computational methods for power flow studies and contingency analysis. In the first part the authors present the relevant computational methods and mathematical concepts. In the second part, power flow and contingency analysis are treated. Furthermore, traditional methods to solve such problems are compared to modern solvers, developed using the knowledge of the first part of the book. Finally, these solvers are analyzed both theoretically and experimentally, clearly showing the benefits of the modern approach.
1 Introduction
1(4)
Part I Computational Methods
2 Fundamental Mathematics
5(6)
2.1 Complex Numbers
5(1)
2.2 Vectors
6(1)
2.3 Matrices
7(2)
2.4 Graphs
9(1)
References
10(1)
3 Solving Linear Systems of Equations
11(10)
3.1 Direct Solvers
12(2)
3.1.1 LU Decomposition
12(1)
3.1.2 Solution Accuracy
13(1)
3.1.3 Algorithmic Complexity
13(1)
3.1.4 Fill-in and Matrix Ordering
13(1)
3.1.5 Incomplete LU decomposition
14(1)
3.2 Iterative Solvers
14(5)
3.2.1 Krylov Subspace Methods
15(1)
3.2.2 Optimality and Short Recurrences
16(1)
3.2.3 Algorithmic Complexity
16(1)
3.2.4 Preconditioning
16(2)
3.2.5 Starting and Stopping
18(1)
References
19(2)
4 Solving Nonlinear Systems of Equations
21(8)
4.1 Newton-Raphson Methods
22(3)
4.1.1 Inexact Newton
23(1)
4.1.2 Approximate Jacobian Newton
24(1)
4.1.3 Jacobian-Free Newton
24(1)
4.2 Newton-Raphson with Global Convergence
25(3)
4.2.1 Line Search
25(2)
4.2.2 Trust Regions
27(1)
References
28(1)
5 Convergence Theory
29(18)
5.1 Convergence of Inexact Iterative Methods
29(4)
5.2 Convergence of Inexact Newton Methods
33(5)
5.2.1 Linear Convergence
37(1)
5.3 Numerical Experiments
38(4)
5.4 Applications
42(2)
5.4.1 Forcing Terms
42(1)
5.4.2 Linear Solver
43(1)
References
44(3)
Part II Power System Analysis
6 Power System Analysis
47(12)
6.1 Electrical Power
49(3)
6.1.1 Voltage and Current
49(1)
6.1.2 Complex Power
50(1)
6.1.3 Impedance and Admittance
51(1)
6.1.4 Kirchhoff s Circuit Laws
52(1)
6.2 Power System. Model
52(4)
6.2.1 Generators, Loads, and Transmission Lines
53(1)
6.2.2 Shunts and Transformers
54(1)
6.2.3 Admittance Matrix
55(1)
6.3 Power Flow
56(1)
6.4 Contingency Analysis
57(1)
References
57(2)
7 Traditional Power Flow Solvers
59(14)
7.1 Newton Power Flow
59(4)
7.1.1 Power Mismatch Function
60(1)
7.1.2 Jacobian Matrix
61(1)
7.1.3 Handling Different Bus Types
62(1)
7.2 Fast Decoupled Load Flow
63(8)
7.2.1 Classical Derivation
64(2)
7.2.2 Shunts and Transformers
66(1)
7.2.3 BB, XB, BX, and XX
67(4)
7.3 Convergence and Computational Properties
71(1)
7.4 Interpretation as Elementary Newton-Krylov Methods
71(1)
References
72(1)
8 Newton-Krylov Power Flow Solver
73(10)
8.1 Linear Solver
73(1)
8.2 Preconditioning
74(3)
8.2.1 Target Matrices
75(1)
8.2.2 Factorisation
75(1)
8.2.3 Reactive Power Limits and Tap Changing
76(1)
8.3 Forcing Terms
77(1)
8.4 Speed and Scaling
78(1)
8.5 Robustness
79(1)
References
80(3)
9 Contingency Analysis
83(4)
9.1 Simulating Branch Outages
83(3)
9.2 Other Simulations with Uncertainty
86(1)
References
86(1)
10 Numerical Experiments
87(16)
10.1 Factorisation
87(5)
10.1.1 LU Factorisation
88(3)
10.1.2 ILU Factorisation
91(1)
10.2 Forcing Terms
92(3)
10.3 Power Flow
95(5)
10.3.1 Scaling
98(2)
10.4 Contingency Analysis
100(2)
References
102(1)
11 Power Flow Test Cases
103(4)
11.1 Construction
103(2)
References
105(2)
Index 107