Preface |
|
vii | |
|
1 Statistical Preliminary |
|
|
1 | (26) |
|
1.1 General Linear Models |
|
|
1 | (4) |
|
|
5 | (5) |
|
1.2.1 Covariance Functions |
|
|
6 | (1) |
|
1.2.2 Gaussian Random Fields |
|
|
7 | (1) |
|
1.2.3 Differentiation and Integration of Fields |
|
|
8 | (2) |
|
1.2.4 Statistical Inference on Fields |
|
|
10 | (1) |
|
|
10 | (10) |
|
1.3.1 Bonferroni Correction |
|
|
12 | (1) |
|
1.3.2 Random Fields Theory |
|
|
13 | (1) |
|
1.3.3 Poisson Clumping Heuristic |
|
|
14 | (1) |
|
1.3.4 Euler Characteristic Method |
|
|
15 | (2) |
|
|
17 | (1) |
|
1.3.6 Euler Characteristic Density |
|
|
18 | (2) |
|
1.4 Statistical Power Analysis |
|
|
20 | (7) |
|
1.4.1 Statistical Power at a Voxel |
|
|
20 | (2) |
|
1.4.2 Statistical Power under Multiple Comparisons |
|
|
22 | (5) |
|
2 Deformation-Based Morphometry |
|
|
27 | (22) |
|
|
28 | (2) |
|
2.2 Deformation-Based Morphometry |
|
|
30 | (1) |
|
2.3 Displacement Vector Fields |
|
|
31 | (8) |
|
2.3.1 Dynamic Model on Displacement |
|
|
32 | (1) |
|
2.3.2 Local Inference via Hotelling's T2-Field |
|
|
33 | (3) |
|
2.3.3 Detecting Local Brain Growth |
|
|
36 | (3) |
|
2.4 Global Inference via Integral Statistic |
|
|
39 | (10) |
|
2.4.1 Karhunen-Loeve Expansion |
|
|
40 | (3) |
|
|
43 | (2) |
|
2.4.3 Integral Statistic on Displacement |
|
|
45 | (4) |
|
3 Tensor-Based Morphometry |
|
|
49 | (20) |
|
|
50 | (1) |
|
3.2 Distributional Assumptions |
|
|
51 | (2) |
|
|
53 | (3) |
|
3.4 Longitudinal Modeling |
|
|
56 | (6) |
|
3.4.1 Normal Brain Development in Children |
|
|
57 | (5) |
|
3.5 Global Inference via Divergence Theorem |
|
|
62 | (1) |
|
3.6 Second Order Tensor Fields |
|
|
63 | (6) |
|
3.6.1 Membrane Spline Energy |
|
|
63 | (1) |
|
3.6.2 Vorticity Tensor Fields |
|
|
64 | (2) |
|
3.6.3 Generalized Variance Field |
|
|
66 | (3) |
|
4 Voxel-Based Morphometry |
|
|
69 | (28) |
|
|
71 | (8) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
72 | (3) |
|
4.1.4 Deformable Surface Models |
|
|
75 | (1) |
|
4.1.5 Thin-Plate Spline Thresholding |
|
|
76 | (3) |
|
|
79 | (8) |
|
4.2.1 Bayesian Segmentation |
|
|
79 | (1) |
|
|
80 | (2) |
|
4.2.3 Expectation Maximization Algorithm |
|
|
82 | (2) |
|
4.2.4 Two Components Gaussian Mixtures |
|
|
84 | (3) |
|
4.3 Voxel-Based Morphometry |
|
|
87 | (10) |
|
4.3.1 ROI Volume Estimation in VBM |
|
|
87 | (2) |
|
4.3.2 Limitations of Witelson Partition |
|
|
89 | (2) |
|
4.3.3 General Linear Models on Tissue Densities |
|
|
91 | (1) |
|
4.3.4 2D VBM Applied to Corpus Callosum |
|
|
92 | (5) |
|
5 Geometry of Cortical Manifolds |
|
|
97 | (30) |
|
5.1 Surface Parameterization |
|
|
98 | (5) |
|
5.1.1 B-Spline Parameterization |
|
|
99 | (1) |
|
|
99 | (1) |
|
5.1.3 Quadratic Parameterization |
|
|
100 | (3) |
|
5.1.4 Fourier Descriptors |
|
|
103 | (1) |
|
5.2 Surface Normals and Curvatures |
|
|
103 | (6) |
|
|
104 | (2) |
|
5.2.2 Gaussian and Mean Curvatures |
|
|
106 | (1) |
|
5.2.3 Curvatures of Polynomial Surfaces |
|
|
107 | (2) |
|
5.3 Laplace-Beltrami Operator |
|
|
109 | (13) |
|
5.3.1 Eigenfunctions of Laplace-Beltrami Operator |
|
|
110 | (2) |
|
5.3.2 Multiplicity of Eigenfunctions |
|
|
112 | (1) |
|
5.3.3 Laplace-Beltrami Shape Descriptors |
|
|
113 | (1) |
|
5.3.4 Second Eigenfunctions |
|
|
114 | (1) |
|
|
115 | (4) |
|
|
119 | (3) |
|
5.4 Finite Element Methods |
|
|
122 | (5) |
|
5.4.1 Pieacewise Linear Functions |
|
|
122 | (1) |
|
5.4.2 Mass and Stiffness Matrices |
|
|
123 | (4) |
|
6 Smoothing on Cortical Manifolds |
|
|
127 | (34) |
|
6.1 Gaussian Kernel Smoothing |
|
|
129 | (4) |
|
6.1.1 Isotropic Gaussian Kernel |
|
|
130 | (1) |
|
6.1.2 Anisotropic Gaussian Kernel |
|
|
131 | (2) |
|
|
133 | (8) |
|
6.2.1 Diffusion in Euclidean Space |
|
|
133 | (1) |
|
|
134 | (2) |
|
6.2.3 Diffusion on Triangular Mesh |
|
|
136 | (2) |
|
6.2.4 Finite Difference Scheme |
|
|
138 | (3) |
|
6.3 Heat Kernel Smoothing |
|
|
141 | (11) |
|
|
143 | (2) |
|
6.3.2 Heat Kernel Smoothing |
|
|
145 | (3) |
|
6.3.3 Iterated Kernel Smoothing |
|
|
148 | (2) |
|
6.3.4 Smoothing via Laplace-Beltrami Eigenfunctions |
|
|
150 | (2) |
|
6.4 Smoothness of Random Fields |
|
|
152 | (4) |
|
|
154 | (1) |
|
6.4.2 Effective Bandwidth |
|
|
155 | (1) |
|
6.4.3 Unbiased Estimator of eFWHM |
|
|
155 | (1) |
|
6.5 Gaussianness of Random Fields |
|
|
156 | (5) |
|
|
156 | (1) |
|
6.5.2 Empirical Distribution |
|
|
157 | (1) |
|
6.5.3 Quantile Quantile Plots |
|
|
157 | (2) |
|
6.5.4 Checking Gaussianness in Cortical Thickness |
|
|
159 | (2) |
|
7 Surface-Based Morphometry |
|
|
161 | (56) |
|
|
163 | (4) |
|
|
167 | (8) |
|
7.2.1 Cortical Thickness via Laplace Equation |
|
|
167 | (3) |
|
7.2.2 Cortical Thickness vs. Gray Matter Density |
|
|
170 | (1) |
|
|
171 | (4) |
|
7.3 Partial Correlation Mapping |
|
|
175 | (8) |
|
7.3.1 Partial Correlations |
|
|
176 | (1) |
|
7.3.2 Statistical Inference on Correlations |
|
|
177 | (4) |
|
7.3.3 Brain-Behavior Correlations |
|
|
181 | (1) |
|
7.3.4 Facial Emotion Discrimination Tasks |
|
|
182 | (1) |
|
7.4 Tensor-Based Surface Morphometry |
|
|
183 | (13) |
|
7.4.1 Surface Deformation |
|
|
184 | (2) |
|
7.4.2 Metric Tensor Computation on Surfaces |
|
|
186 | (3) |
|
7.4.3 Statistical Inference on Surfaces |
|
|
189 | (1) |
|
7.4.4 Quantifying Brain Growth |
|
|
190 | (1) |
|
7.4.5 Tensor Computation via SPHARM |
|
|
191 | (5) |
|
7.5 Multivariate General Linear Models |
|
|
196 | (5) |
|
|
198 | (1) |
|
|
199 | (2) |
|
7.6 Mixed Effect Models on Surface Shape Change |
|
|
201 | (7) |
|
7.6.1 Longitudinal Imaging Data |
|
|
202 | (2) |
|
7.6.2 Mixed Effect Models |
|
|
204 | (1) |
|
7.6.3 Restricted Maximum Likelihood Estimation |
|
|
205 | (1) |
|
7.6.4 Longitudinal Hippocampus Shape Model |
|
|
206 | (1) |
|
7.6.5 Functional Mixed Effect Models |
|
|
207 | (1) |
|
7.7 Sparse Surface Shape Recovery |
|
|
208 | (9) |
|
7.7.1 Sparse Regression on Surface Data |
|
|
210 | (3) |
|
7.7.2 Effect of Aging on Hippocampus Shape |
|
|
213 | (4) |
|
8 Weighted Fourier Representation |
|
|
217 | (60) |
|
8.1 Fourier Series in Hilbert Space |
|
|
219 | (2) |
|
8.2 Weighted Fourier Representation |
|
|
221 | (7) |
|
|
222 | (1) |
|
8.2.2 Heat Kernel Smoothing |
|
|
223 | (1) |
|
|
224 | (1) |
|
8.2.4 Iterative Residual Fitting Algorithm |
|
|
225 | (1) |
|
8.2.5 Best Model Selection |
|
|
226 | (2) |
|
8.3 Weighted Spherical Harmonic Representation |
|
|
228 | (8) |
|
8.3.1 Spherical Harmonics |
|
|
228 | (1) |
|
8.3.2 Spherical Harmonic Representation |
|
|
229 | (3) |
|
8.3.3 Iterative Residual Fitting on Spherical Harmonics |
|
|
232 | (4) |
|
|
236 | (5) |
|
8.4.1 Reduction of Gibbs Phenomenon |
|
|
238 | (2) |
|
8.4.2 The Overshoot of Gibbs Phenomenon |
|
|
240 | (1) |
|
8.5 SPHARM Correspondance |
|
|
241 | (4) |
|
|
245 | (7) |
|
8.6.1 Hemisphere Correspondence |
|
|
245 | (3) |
|
8.6.2 Abnormal Cortical Asymmetry in Autism |
|
|
248 | (2) |
|
8.6.3 FWHM of Heat Kernel |
|
|
250 | (2) |
|
8.7 Logistic Discriminant Analysis on Cortical Surface |
|
|
252 | (5) |
|
|
252 | (1) |
|
8.7.2 Maximum Likelihood Estimation |
|
|
253 | (1) |
|
8.7.3 Best Model Selection |
|
|
254 | (1) |
|
8.7.4 Classification Accuracy |
|
|
255 | (2) |
|
8.8 Tiling Surfaces with Orthonormal Basis |
|
|
257 | (10) |
|
8.8.1 Orhonormal Basis on a Sphere |
|
|
258 | (2) |
|
8.8.2 Orthonormal Basis on Manifolds |
|
|
260 | (3) |
|
8.8.3 Numerical Implementation |
|
|
263 | (2) |
|
8.8.4 Pullback Representation |
|
|
265 | (2) |
|
8.9 Basis Function Expansion on Multiple Shells |
|
|
267 | (10) |
|
8.9.1 Eigenfunction Expansion in a Solid Ball |
|
|
269 | (3) |
|
8.9.2 Iterative Residual Fitting |
|
|
272 | (1) |
|
8.9.3 3D Resampling of 2D Surface Data |
|
|
273 | (4) |
|
9 Structural Brain Connectivity |
|
|
277 | (58) |
|
9.1 White Matter Fiber Tractography |
|
|
278 | (3) |
|
|
278 | (1) |
|
|
279 | (1) |
|
9.1.3 Probabilistic Methods |
|
|
279 | (2) |
|
9.2 Probabilistic Connectivity |
|
|
281 | (3) |
|
9.3 Cosine Series Representation of Fiber Tracts |
|
|
284 | (12) |
|
9.3.1 Cosine Basis in a Unit Interval |
|
|
285 | (1) |
|
9.3.2 Cosine Series Representation of 3D Curves |
|
|
286 | (2) |
|
9.3.3 Optimal Degree Selection |
|
|
288 | (3) |
|
9.3.4 Distance Between Tracts |
|
|
291 | (2) |
|
|
293 | (1) |
|
9.3.6 Limitation of Cosine Series Representation |
|
|
294 | (2) |
|
9.4 Parcellation-Free Brain Networks |
|
|
296 | (12) |
|
9.4.1 Why Parcellation Free? |
|
|
297 | (2) |
|
9.4.2 Epsilon Neighbor Networks |
|
|
299 | (3) |
|
9.4.3 Connected Components |
|
|
302 | (1) |
|
|
303 | (2) |
|
9.4.5 Electrical Circuit Model for Fiber Tracts |
|
|
305 | (3) |
|
9.5 Structural Brain Connectivity without DTI |
|
|
308 | (10) |
|
9.5.1 Correlating Jacobiau Determinants |
|
|
309 | (1) |
|
9.5.2 Seed-Based Connectivity |
|
|
310 | (2) |
|
9.5.3 Parcellation-Based Connectivity |
|
|
312 | (1) |
|
|
313 | (3) |
|
|
316 | (2) |
|
9.6 Network Complexity Measures |
|
|
318 | (7) |
|
9.6.1 Degree Distribution |
|
|
318 | (2) |
|
|
320 | (1) |
|
|
321 | (2) |
|
9.6.4 Clustering Coefficient |
|
|
323 | (2) |
|
9.7 Sparse Brain Network Models |
|
|
325 | (7) |
|
9.7.1 Correlation Thresholding |
|
|
325 | (2) |
|
9.7.2 Sparse Partial Correlation |
|
|
327 | (2) |
|
9.7.3 Sparse Network Recovery |
|
|
329 | (3) |
|
9.8 Dynamic Network Modeling |
|
|
332 | (3) |
|
10 Topological Data Analysis |
|
|
335 | (32) |
|
10.1 Detecting Topological Defect in Images |
|
|
336 | (2) |
|
10.2 Expected Euler Characteristic |
|
|
338 | (2) |
|
|
340 | (3) |
|
|
341 | (1) |
|
|
342 | (1) |
|
|
342 | (1) |
|
10.4 Persistence Diagrams |
|
|
343 | (9) |
|
|
343 | (2) |
|
10.4.2 Persistence Diagrams |
|
|
345 | (2) |
|
10.4.3 Persistence Diagram for Cortical Thickness |
|
|
347 | (4) |
|
10.4.4 Inference on Persistent Diagrams |
|
|
351 | (1) |
|
|
352 | (5) |
|
10.5.1 Why Critical Values? |
|
|
352 | (1) |
|
10.5.2 Iterative Pairing and Deletion Algorithm |
|
|
353 | (2) |
|
10.5.3 Statistical Inference on Mix-Max Diagrams |
|
|
355 | (2) |
|
|
357 | (10) |
|
|
358 | (3) |
|
10.6.2 Single Linkage Matrix |
|
|
361 | (2) |
|
10.6.3 Persistent Brain Networks |
|
|
363 | (4) |
Bibliography |
|
367 | (32) |
Index |
|
399 | |