Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computational Solid Mechanics For Oil Well Perforator Design

(National Cheng Kung Univ, Taiwan)
  • Formāts: 388 pages
  • Izdošanas datums: 05-Jun-2018
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813239340
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 45,08 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 388 pages
  • Izdošanas datums: 05-Jun-2018
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813239340
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents the computational methods for solving the solid mechanic problems in the oil well perforator design. Both Lagrangian and Eulerian methods are used to solve the pertinent stress-strain equations and the shock wave running through the materials. Seven good performance oil well perforators and two conical shaped charges for defeating the reactive armor are included in this book as references. The computer programs written in Fortran for the calculation of high explosive burn time and burndistance, shear modulus and yield strength for many materials, as well as MATLAB plotting programs for many perforators are available online as supplementary materials for the book--
Preface vii
About the Author ix
1 Introduction 1(6)
Bibliography
6(1)
2 Lagrangian Method for Shock Wave and Stress Calculations 7(30)
2.1 Introduction
8(1)
2.2 The Governing Equations
9(17)
2.3 Calculation of Stress Deviators at tn+1
26(5)
2.4 Correction of Stresses for Rigid Body Rotation During Δt
31(1)
2.5 Calculation of Pn+1 and n+1
32(2)
2.6 Calculation of Longitudinal Sound Speed
34(2)
2.7 Artificial Viscosity Used in the Two-Dimensional Lagrangian Code
36(1)
Bibliography
36(1)
3 Two-Dimensional Eulerian Method 37(94)
3.1 Introduction
38(1)
3.2 General Description of Physical Formulation
39(21)
3.2.1 The Conservation Equation for a Stress-Supporting Medium
39(10)
3.2.2 Equation of State
49(10)
3.2.3 Span
59(1)
3.3 Computational Scheme
60(38)
3.3.1 General Discussion
60(1)
3.3.2 Summary of Calculation Procedure
61(1)
3.3.3 Lagrangian Phase
62(20)
3.3.4 Stress Calculation in the Plastic Regime of Flow
82(8)
3.3.5 Particle Transport and Remapping
90(3)
3.3.6 Computation for Spall
93(2)
3.3.7 Time Step Control
95(1)
3.3.8 The Logic for the Calculation Procedure
96(2)
3.4 Truncation Error Analysis
98(19)
3.4.1 Mass
99(6)
3.4.2 Radial Momentum
105(3)
3.4.3 Axial Momentum
108(3)
3.4.4 Internal Energy
111(4)
3.4.5 Deviatoric Stresses
115(2)
3.5 Equivalent Plastic Strain
117(2)
3.6 FCT Applied to Second-Order PIC
119(9)
3.6.1 Introduction
119(1)
3.6.2 Modified Mass Transport
119(6)
3.6.3 The Modified FCT Analysis
125(3)
Bibliography
128(3)
4 EOS, Constitutive Relationship and High Explosive 131(42)
4.1 Introduction to the Equation of State
133(1)
4.2 The Mie - Gruneisen EOS and the Simple us, up Model
133(2)
4.3 The Osborne Model
135(1)
4.4 The Tillotson Equation of State
136(1)
4.5 Introduction to the Constitutive Relationship
136(1)
4.6 Quadratic Model
137(1)
4.7 Steinberg-Guinan Model
137(3)
4.8 Steinberg's New Model
140(4)
4.8.1 Program EOSGY
143(1)
4.9 High Explosive
144(7)
4.9.1 Introduction
144(1)
4.9.2 JWL Equation of State
145(1)
4.9.3 Small Variation of JWL EOS
146(1)
4.9.4 Computer Code for Two-Dimensional Programmed Burn
146(4)
4.9.5 Computer Code HEDET3 for Three-Dimensional Programmed Burn
150(1)
4.10 Derivation of the Hugoniot Relations
151(7)
4.10.1 Introduction
151(1)
4.10.2 Conservation of Mass
152(3)
4.10.3 Conservation of Momentum
155(1)
4.10.4 Conservation of Energy
156(2)
4.11 The Shock-Change Equations
158(10)
4.11.1 Introduction
158(1)
4.11.2 The Shock-Change Equation
159(9)
4.11.3 Summary of the Shock-Change Equation
168(1)
4.12 The Theoretical Spall Strength
168(3)
Bibliography
171(2)
5 The Exact Dimensions of the Perforators 173(34)
5.1 Introduction
174(1)
5.2 Perforator B
175(1)
5.3 Perforator E
176(1)
5.4 Perforator G
177(1)
5.5 Perforator L
178(1)
5.6 Perforator M
178(2)
5.7 Perforator N
180(1)
5.8 Perforator P
181(1)
5.9 The Penetrating Characteristic of the Penetrators
182(8)
5.9.1 Introduction
182(1)
5.9.2 Copper Liner of a Diameter 3.5 cm
183(3)
5.9.3 Perforators Described in Figs. 6 and 11 of the File EULE2D-Fig
186(1)
5.9.4 Perforators Described in Figs. 16, 26 and 31 of the File EULE2D-Fig
187(2)
5.9.5 Special Design of 4.3 cm Charge Diameter Shaped Charge
189(1)
5.10 Program Curve
190(5)
5.11 Plotting Programs Using MATLAB
195(1)
5.12 The Exact Dimensions of Explosive Formed Projectile and Shaped Charge
196(9)
5.12.1 Copper Explosive Formed Projectile
196(1)
5.12.2 Bi-conical Copper Liner Shaped Charge
197(1)
5.12.3 Small Charge Diameter Conical Shaped Charge
198(1)
5.12.4 Small Charge Diameter Shaped Charge with Wave Shaper
199(1)
5.12.5 Non-axisymmetric Tantalum EFP Warhead
200(2)
5.12.6 Copper Hemi-spherical Liner with Energetic Explosive
202(3)
5.13 Computer Programs
205(1)
Bibliography
206(1)
6 Two-Dimensional Lagrangian Method for Radiation Diffusion 207(34)
6.1 Introduction
209(1)
6.2 Definition of Variable and Notation
210(5)
6.3 The Governing Equation
215(1)
6.4 Equation of State
216(1)
6.5 Calculation Procedures and Finite Differences
216(9)
6.6 Two-Dimensional Lagrangian Method for Radiation Diffusion Problems
225(15)
6.6.1 Introduction
225(1)
6.6.2 Finite Difference Approximation for the Radiation Diffusion Equation
225(8)
6.6.3 Monte Carlo Method
233(4)
6.6.4 Monte Carlo Procedure
237(3)
Bibliography
240(1)
Appendix A Rezone for Two-Dimensional Lagrangian Hydrodynamic Code 241(68)
A.1 Introduction
242(1)
A.2 The REZONE Model
243(3)
A.2.1 Zone and Point Model
243(1)
A.2.2 The Mass Model
243(2)
A.2.3 Sub-zone Definition
245(1)
A.3 A Brief Description of the Rezone Method
246(6)
A.3.1 The REZONE Code
246(1)
A.3.2 The Displacement Pass
246(1)
A.3.3 The Expansion Pass
247(1)
A.3.4 The Vertex Pass
247(3)
A.3.5 The Midpoint Pass
250(1)
A.3.6 The Point 8 Pass
250(1)
A.3.7 The Velocity Adjustment Pass
250(1)
A.3.8 The Averaging Pass
250(2)
A.4 Testing for a Rezone
252(7)
A.4.1 Philosophy
252(1)
A.4.2 Test Details - General Case
252(4)
A.4.3 Tests on Boundaries
256(1)
A.4.4 Additions to the Tests
257(1)
A.4.5 Limitations on the Testing
257(2)
A.4.6 Changes in Test Values
259(1)
A.4.7 General Remarks
259(1)
A.5 The Displacement Pass
259(12)
A.5.1 Displacement Cases for the Interior Points
260(1)
A.5.2 Displacement on Boundary Points
261(1)
A.5.3 The Displacement Method
261(6)
A.5.4 Limitations on the Displacement Calculations
267(4)
A.5.5 Remarks
271(1)
A.6 Expansion Pass
271(3)
A.6.1 Introduction
271(1)
A.6.2 Sub-mesh Storage
272(2)
A.7 Rezone Method - General Case
274(14)
A.7.1 Preparation - Definition of the System
275(1)
A.7.2 Find Orientation of the System
275(1)
A.7.3 The Rezone Process
276(3)
A.7.4 The Rezone Cases
279(8)
A.7.5 Mapping Other Quantities
287(1)
A.7.6 Intersection Calculation
287(1)
A.8 Rezone Method - Boundary Cases
288(7)
A.8.1 Constant R, Constant Z, and Slide Angle
288(4)
A.8.2 Free Surface Case
292(1)
A.8.3 Center of Mass Case
293(2)
A.9 The Vertex, Midpoint, Point 8, and Velocity Passes
295(3)
A.9.1 Possible Cases
295(2)
A.9.2 The Vertex Pass
297(1)
A.9.3 The Midpoint Pass
297(1)
A.9.4 The Point 8 Pass
298(1)
A.9.5 The Velocity Adjustment Pass
298(1)
A.10 The Averaging Pass
298(2)
A.10.1 Point Quantities
299(1)
A.10.2 Zone Quantities
300(1)
A.11 Completing the Rezone
300(1)
A.11.1 New Velocities
301(1)
A.11.2 New Zone Mass
301(1)
A.11.3 New Pressure
301(1)
A.11.4 New q Terms (Artificial Viscosity)
301(1)
A.11.5 Clear Flags
301(1)
A.12 Summary
301(1)
A.13 Final Remarks
302(1)
A.14 Examples
302(3)
A.15 Directed Kinetic Energy
305(2)
Bibliography
307(2)
Appendix B Eigenvalue Calculations 309(50)
B.1 Introduction
310(3)
B.2 Standard Methods
313(1)
B.3 Group-Collapse Coarse Mesh Re-balance
314(4)
B.4 Whole System Group-wise Re-balance
318(4)
B.5 Variable Convergence Precision and Iteration Strategies
322(2)
B.6 Test Problem and Results
324(14)
B.7 Subcritical Searches
338(8)
B.8 Implementation of a Re-balance Acceleration
346(10)
B.9 Conclusion
356(1)
Bibliography
356(3)
Appendix C Hugoniot Data and JWL EOS 359(8)
Appendix D Supplementary Materials 367(2)
Index 369