Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computational and Statistical Epigenomics

  • Formāts: PDF+DRM
  • Sērija : Translational Bioinformatics 7
  • Izdošanas datums: 12-May-2015
  • Izdevniecība: Springer
  • Valoda: eng
  • ISBN-13: 9789401799270
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Translational Bioinformatics 7
  • Izdošanas datums: 12-May-2015
  • Izdevniecība: Springer
  • Valoda: eng
  • ISBN-13: 9789401799270

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book introduces the reader to modern computational and statistical tools for translational epigenomics research. Over the last decade, epigenomics has emerged as a key area of molecular biology, epidemiology and genome medicine. Epigenomics not only offers us a deeper understanding of fundamental cellular biology, but also provides us with the basis for an improved understanding and management of complex diseases. From novel biomarkers for risk prediction, early detection, diagnosis and prognosis of common diseases, to novel therapeutic strategies, epigenomics is set to play a key role in the personalized medicine of the future. In this book we introduce the reader to some of the most important computational and statistical methods for analyzing epigenomic data, with a special focus on DNA methylation. Topics include normalization, correction for cellular heterogeneity, batch effects, clustering, supervised analysis and integrative methods for systems epigenomics. This book will be of interest to students and researchers in bioinformatics, biostatistics, biologists and clinicians alike.

Dr. Andrew E. Teschendorff is Head of the Computational Systems Genomics Lab at the CAS-MPG Partner Institute for Computational Biology, Shanghai, China, as well as an Honorary Research Fellow at the UCL Cancer Institute, University College London, UK.

Recenzijas

This volume in the Translational Bioinformatics series introduces modern computational and statistical tools for translational epigenomic research with a special focus on DNA methylation. This is a valuable resource for students, clinicians, and researchers who wish to understand the basics of modern computational and statistical tools for translational epigenomics research. The analytical, storage-related, and interpretive methods discussed in this book hold great promise in helping improve prediction, early diagnosis, severity monitoring, therapeutic effect, and prognosis of human diseases. (Pooja Sethi, Doodys Book Reviews, July, 2015)

Part I Normalization and Analysis Methods for DNA Methylation and ChIP-Seq Data
1 Introduction to Data Types in Epigenomics
3(32)
Francesco Marabita
Jesper Tegner
David Gomez-Cabrero
2 DNA Methylation and Cell-Type Distribution
35(16)
E. Andres Houseman
3 A General Strategy for Inter-sample Variability Assessment and Normalisation
51(18)
Zhen Yang
Andrew E. Teschendorff
4 Quantitative Comparison of ChIP-Seq Data Sets Using MAnorm
69(22)
Zhen Shao
Yijing Zhang
5 Model-Based Clustering of DNA Methylation Array Data
91(36)
Devin C. Koestler
E. Andres Houseman
Part II Integrative and Medical Epigenomics
6 Integrative Epigenomics
127(14)
Ming Su
Xiaoyang Dou
Hao Cheng
Jing-Dong J. Han
7 Towards a Mechanistic Understanding of Epigenetic Dynamics
141(20)
Jens Przybilla
Thimo Rohlf
Joerg Galle
8 Systems Epigenomics and Applications to Ageing and Cancer
161(26)
Andrew E. Teschendorff
9 Epigenomic Biomarkers for the Advance of Personalized Medicine
187
Jesus Mendez-Gonzalez
Juan Sandoval