Atjaunināt sīkdatņu piekrišanu

Computer-Aided Analysis of Nonlinear Microwave Circuits Unabridged edition [Hardback]

  • Formāts: Hardback, 447 pages
  • Izdošanas datums: 31-Dec-1997
  • Izdevniecība: Artech House Publishers
  • ISBN-10: 0890066906
  • ISBN-13: 9780890066904
  • Hardback
  • Cena: 165,25 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 447 pages
  • Izdošanas datums: 31-Dec-1997
  • Izdevniecība: Artech House Publishers
  • ISBN-10: 0890066906
  • ISBN-13: 9780890066904
Focusing on the computer-aided analysis of nonlinear microwave circuits, this text discusses the techniques used to analyze such circuits and shows the reader how to get better performance from these techniques using circuit-analysis software. It details the use of semi-analytic and numerical physical models in nonlinear circuit analysis, and reviews the two uses of physical models in nonlinear CAD. Supported by 330 equations, practical examples, and ready-made samples of computer code written in C, this book should be of interest to microwave engineers, researchers, developers and graduate students.
Preface xviii
Chapter 1 Introduction
1(30)
1.1 Frequency Generation in Nonlinear Circuits
2(4)
1.2 Nonlinear Microwave Circuits
6(2)
1.3 Relationships Between Fourier Coefficients and Power
8(5)
1.4 Numerical Analysis of Nonlinear Circuits: a Simple Example
13(17)
1.4.1 Time-Domain Integration
15(10)
1.4.2 Harmonic Balance
25(5)
References
30(1)
Chapter 2 Equivalent-Circuit Models
31(28)
2.1 Nonlinear Circuit Elements
32(6)
2.1.1 Two-Terminal Nonlinear Voltage-Controlled Resistor
33(2)
2.1.2 Nonlinear Capacitor
35
2.1.3 Nonlinear Voltage-Controlled Current Source
26(12)
2.2 Microwave Diodes
38(6)
2.3 Microwave MESFETs
44(9)
2.3.1 MESFET Structure
45(1)
2.3.2 Principles of MESFET Operation
46(3)
2.3.3 MESFET Large-Signal Equivalent-Circuit Model
49
2.3.4 Analytical Expressions for the Nonlinear Circuit Elements
41(12)
2.3.5 MESFET Small-Signal Equivalent-Circuit Model
53(1)
2.4 Parameter Determination
53(2)
2.5 Limitations of Equivalent-Circuit Models
55(1)
References
56(3)
Chapter 3 Physical Models
59(46)
3.1 MMIC Technology and Physical Models
61(2)
3.2 Physical Modeling of GaAs MESFETs
63(4)
3.2.1 Analytic Physical Models
64(1)
3.2.2 Two-Dimensional Numerical Physical Models
65(1)
3.2.3 Quasi-Two-Dimensional Physical Models
66(1)
3.3 Microwave Nonlinear Circuit Analysis Based on Physical Models
67(1)
3.4 Device Equations
67(14)
3.4.1 The Boltzmann Transport Equation (BTE)
68(2)
3.4.2 The Hydrodynamic Equations: The Moments of the BTE
70(2)
3.4.3 The Single-Gas Approximation
72(8)
3.4.4 The Drift-Diffusion Equations
80(1)
3.5 An Analytic GaAs MESFET Physical Model
81(7)
3.6 A Numerical MESFET Physical Model
88(6)
3.6.1 Active Channel Equations
89(4)
3.6.2 Depletion Region Boundary
93(1)
3.6.3 Discretization and Solution of the Equations
93(1)
3.6.4 Simulated DC Characteristics
94(1)
3.7 Equivalent-Circuit Model Generation
94(4)
3.8 Final Remarks
98(1)
References
99(6)
Chapter 4 Formulation of the Circuit Equations
105(42)
4.1 Resistive Circuits
105(1)
4.2 Graphs and Kirchhoff's Laws in Matrix Form
106(9)
4.3 Tableau Analysis
115(4)
4.4 Nodal Analysis
119(7)
4.5 Modified Nodal Analysis (MNA)
126(6)
4.6 General Formulation of the Circuit Equations
132(13)
4.6.1 KCL Based on Cut Sets
134(2)
4.6.2 KVL Based on Loops
136(2)
4.6.3 Trees and Kirchhoff's Laws
138(5)
4.6.4 Circuit Analysis Based on Trees: the Hybrid Approach
143(2)
References
145(2)
Chapter 5 Algorithms for Solving Systems of Nonlinear Algebraic Equations
147(32)
5.1 Introductory Concepts
147(3)
5.2 Newton's Method
150(6)
5.3 Quasi-Newton or Modification Methods
156(4)
5.4 Continuation Methods
160(8)
5.4.1 Discrete Methods
162(1)
5.4.2 Continuous Methods
163(5)
5.5 Solution of Systems of Linear Algebraic Equations
168(5)
5.5.1 Standard Methods
168(3)
5.5.2 Sparse Matrix Methods
171(2)
5.6 Newton's Method Discrete Equivalent Circuit
173(4)
References
177(2)
Chapter 6 Time-Domain Methods: Integration of the Circuit Equations
179(50)
6.1 Transmission Line Models in the Time Domain
180(5)
6.1.1 Ideal Transmission Lines
180(2)
6.1.2 Nonideal Transmission Lines
182(3)
6.2 Circuit Equations in the Time Domain
185(6)
6.2.1 Charge Conservation
187(2)
6.2.2 State Equations
189(2)
6.3 Numerical Integration of Ordinary Differential Equations
191(17)
6.3.1 Multistep Methods
192(6)
6.3.2 Stability of Multistep Methods
198(8)
6.3.3 Stiff Problems
206(2)
6.4 Models for Nonlinear Capacitors and Inductors
208(4)
6.5 Resistive Associated Discrete Circuit Models
212(9)
6.5.1 Capacitors and Inductors
213(5)
6.5.2 Transmission Lines
218(3)
6.6 Step-Size Control
221(3)
6.7 The Shooting Method
224(1)
6.8 Final Remarks
225(1)
References
226(3)
Chapter 7 Frequency-Domain Methods: the Harmonic Balance
229(86)
7.1 Equations for Linear Circuits in the Frequency Domain
235(7)
7.1.1 Modified Nodal Analysis in the Frequency Domain
238(3)
7.1.2 Eliminating Internal Nodes
241(1)
7.2 Spectrum Truncation
242(3)
7.3 Generalized Discrete Fourier Transform
245(4)
7.4 Fourier Transform Implementation
249(22)
7.4.1 Discrete Fourier Transform
249(4)
7.4.2 Fast Fourier Transform
253(3)
7.4.3 Multidimensional Discrete Fourier Transform
256(5)
7.4.4 Almost-Periodic Fourier Transforms
261(6)
7.4.5 Mapping Techniques
267(4)
7.5 Introduction to Harmonic Balance in Circuit Analysis
271(8)
7.6 General Formulation of Harmonic Balance for Circuit Analysis
279(15)
7.6.1 Piecewise Harmonic Balance
280(9)
7.6.2 Nodal Harmonic Balance
289(5)
7.7 Jacobian Computation
294(10)
7.8 Autonomous Circuit Analysis
304(3)
7.9 Other Frequency-Domain Methods
307(2)
7.10 Final Remarks
309(1)
References
309(6)
Chapter 8 Some Aspects of Software Implementation
315(36)
8.1 Circuit Description
315(11)
8.1.1 Basic Circuit Element Description
316(5)
8.1.2 Semiconductor Device Models
321(1)
8.1.3 Hierarchy
322(2)
8.1.4 An Example
324(1)
8.1.5 Final Remarks on Circuit Description
325(1)
8.2 Implementation of Nonlinear Functions in Semiconductor Equivalent-Circuit Models
326(7)
8.3 Implementation of Physical Models in Circuit Simulators
333(3)
8.4 Newton's Method Damping Factor
336(5)
8.5 An Algorithm Based on a Quasi-Newton Method
341(7)
8.5.1 Broyden's Method with Projected Updates
342(2)
8.5.2 Powell's Special Iterations
344(1)
8.5.3 The Algorithm
345(3)
References
348(3)
Chapter 9 Some Examples of Nonlinear Circuit Analysis
351(18)
9.1 Van der Pol Oscillator
351(8)
9.1.1 Time-Domain Simulation
353(1)
9.1.2 Frequency-Domain Simulation
353(6)
9.2 Schottky Diode Equivalent-Circuit Model
359(1)
9.3 MESFET Equivalent-Circuit Model
359(4)
9.4 MESFET Physical Model
363(3)
References
366(3)
Appendix A Analysis and Discretization of the Hydrodynamic Transport Equations
369(22)
A.1 Hyperbolic Systems of Conservation Laws
370(10)
A.1.1 Systems of Conservation Laws
370(1)
A.1.2 Characteristics
371(3)
A.1.3 Weak Solutions, Jump Conditions, and Shocks
374(4)
A.1.4 Boundary Conditions
378(1)
A.1.5 Incompletely Parabolic Problems
379(1)
A.2 Analysis of the Hydrodynamic PDEs
380(2)
A.3 Discretization of the Hydrodynamic PDEs
382(2)
A.4 Discretization Scheme Suitable for Supersonic Flow and Shock Waves: a Simulation Example
384(5)
A.4.1 Comparison with Approximate Models
385(1)
A.4.2 Results for Different Applied Voltages
385(1)
A.4.3 Dynamic Simulation
385(4)
References
389(2)
Appendix B Numerical Linear Algebra and Sparse Matrix Techniques
391(50)
B.1 Linear Algebra Fundamentals
392(13)
B.1.1 Vector Norms
393(1)
B.1.2 Matrix Norms
394(3)
B.1.3 Finite Precision Computer Arithmetic
397(1)
B.1.4 Condition Numbers
398(5)
B.1.5 Permutation Matrices
403(2)
B.2 Gaussian Elimination
405(19)
B.2.1 Solution to Triangular Systems
406(2)
B.2.2 Introduction to Gaussian Elimination
408(3)
B.2.3 Triangularization of Gaussian Elimination as a Sequence of Matrix Multiplications
411(1)
B.2.4 The LU Decomposition
412(2)
B.2.5 Other Computational Sequences for the LU Decomposition
414(3)
B.2.6 Stability of Gaussian Elimination
417(2)
B.2.7 Pivoting
419(3)
B.2.8 Scaling
422(1)
B.2.9 Iterative Improvement
423(1)
B.3 Basic Concepts in Sparse Matrix Techniques
424(3)
B.4 Pivoting Strategies in Sparse Matrix Techniques
427(5)
B.4.1 Maintaining Stability
427(1)
B.4.2 The Markowitz Strategy
428(1)
B.4.3 Alternative Local Strategies
429(1)
B.4.4 Some Aspects of Implementation
430(2)
B.5 Preordering
432(1)
B.6 Additional Sparse Matrix Techniques
433(5)
B.6.1 Switching to Full Form
433(1)
B.6.2 Neglecting Small Entries to Increase Sparsity
434(2)
B.6.3 Variability Types
436(2)
References
438(3)
About the Author 441(2)
Index 443


Paulo Rodrigues is a professor of electrical engineering at the Instituto Tecnol?gico Aeron?utica, Brazil. He is currently involved in the analysis and design of nonlinear microwave and optoelectronic subsystems and has published numerous papers on the subject. Dr. Rodrigues earned his Ph.D. in electrical engineering from the University of Leeds, UK.